Invariant Keisler Measures in ω -categorical Hrushovski constructions By Paolo Marimon, p.marimon19@imperial.ac.uk

(1) Two notions of smallness

Working in a structure \mathcal{M} , there are two natural ways in which we may say that the set defined by the formula $\phi(x, a)$ is "small":

- $F(\emptyset) \phi(x, a)$ forks over \emptyset . Call $F(\emptyset)$ the set of such formulas;
- $\mathcal{O}(\emptyset) \ \phi(x,a)$ is universally measure zero. i.e. it has measure zero for any invariant Keisler measure. Call $\mathcal{O}(\emptyset)$ the set of such formulas;

For stable theories, $F(\emptyset) = \mathcal{O}(\emptyset)$. This should also be the case for NIP theories.

Until the recent counterexamples from [1], it was an open question whether this equality always holds in **simple** theories. It is natural to ask whether the equality holds for ω -categorical **simple** structures.

I proved that for various classes of supersimple ω categorical Hrushovski constructions $F(\emptyset) \subsetneq \mathcal{O}(\emptyset)$. These are the first known ω-**categorical** examples of this phenomenon.

(2) Invariant Keisler Measures

A **Keisler measure** on M is a finitely additive **probability** measure on its definable subsets. We are interested in measures invariant under automorphisms:

$$\mu(X) = \mu(\sigma(X))$$
 for $\sigma \in \operatorname{Aut}(M)$.

There is a correspondence between Keisler measures and regular Borel probability measures on the space $S_x(M)$.

The measure μ is **ergodic** if for any Borel A,

$$\mu(A \triangle \sigma(A)) = 0 \quad \forall \sigma \in \operatorname{Aut}(M) \Rightarrow \mu(A) = 0 \text{ or } 1.$$

Ergodic measures are better behaved, and yield an ergodic decomposition of any invariant Keisler measure:

 $\mu(A) = \int_{\text{Ero}(M)} \nu(A) d\mathfrak{m}(\nu).$

(3) Weak Algebraic Independence and Probabilistic Independence

We say that $A, B \subseteq \mathcal{M}^{eq}$ are weakly algebraically independent if $\operatorname{acl}^{eq}(A) \cap \operatorname{acl}^{eq}(B) =$ $\operatorname{acl}^{eq}(\emptyset)$. We write $A \mid \stackrel{\mathrm{a}}{\searrow} B$.

For ω -categorical structures, weak algebraic independence induces a form of **probabilistic** independence when looking at ergodic measures:

Probabilistic independence theorem [4]

Let \mathcal{M}^{eq} be ω -categorical with $\operatorname{acl}^{eq}(\emptyset) = \operatorname{dcl}^{eq}(\emptyset)$. Let μ be an ergodic measure and a, b be weakly algebraically independent. Then, for any formulas $\phi(x,y),\psi(x,z)$,

 $\mu(\phi(x,a) \land \psi(x,b)) = \mu(\phi(x,a))\mu(\psi(x,b)).$

Recently, [2] have generalised these results outside of the ω -categorical context.

(5) Measures in ω -categorical Hrushovski constructions

Q: Are there simple ω -categorical structures with $F(\emptyset) \subsetneq \mathcal{O}(\emptyset)$? Idea for a counterexample: A simple ω -categorical structure which does not satisfy the strong independence theorem.

Candidate: simple ω -categorical Hrushovski constructions. Why? They are the only known example of supersimple ω -categorical not one-based structures (i.e. weak algebraic independence \neq non-forking independence). So we may be able to construct simple ones not satisfying the strong independence theorem (and indeed we are!).

In particular, we build an ω -categorical supersimple Hrushovski construction \mathcal{M} of SU-rank 2, which is a **graph** such that:

- $\operatorname{acl}^{eq}(\emptyset) = \operatorname{dcl}^{eq}(\emptyset).$
- Aut(M) acts transitively in the vertices of M.
- There are no k-cycles for k < 6.
- If a, b form an edge, $a \perp^{a} b$ (but not $a \perp b$).
- If a and c are at distance two from each other, then $a \downarrow c$.
- The formula $\phi(x,a)$ saying "x has distance" two from $a^{"}$ doesn't fork over the empty-set.

We can also build \mathcal{M} witnessing arbitrarily strong independent *n*-amalgamation properties.

For simple structures, the Probablistic Independence Theorem yields a stronger version of the independence theorem over Ø when forking is the same as being universally measure zero:

But \mathcal{M} has no pentagons and so:

(4) Strong Independence Theorem

Say *a* and *b* are weakly algebraically independent, $c_0 \equiv c_1$ and $c_0 \perp a$, $c_1 \perp b$. Then, there is c^* such that $c^* \equiv_a c_0, c^* \equiv_b c_1, c^* \sqcup ab$.

In general, simple ω -categorical structures with $\operatorname{acl}^{eq}(\emptyset) = \operatorname{dcl}^{eq}(\emptyset)$ satisfy this for $a \, igstarrow b$. But in our result we have weak algebraic independence instead of non-forking independence.

In the way we built our graph, we can see that for \mathcal{M} to satisfy the strong independence theorem, it should contain pentagons!

$F(\emptyset) \subsetneq \mathcal{O}(\emptyset)$ in ω -categorical simple structures

There are ω -categorical simple structures with $F(\emptyset) \subsetneq \mathcal{O}(\emptyset)$. In particular, various ω -categorical supersimple Hrushovski constructions witness this.

(6) Non-MS-measurability

An MS-measurable structure has a dimensionmeasure function which is definable and finite and where the dimension and the associated measures satisfy **Fubini's theorem** [5].

Elwes and Macpherson [3] asked whether all ω -categorical supersimple structures of finite SU-rank are MS-measurable.

Supersimple ω -categorical finite rank and NOT MS-measurable

The same example shows that various ω categorical Hrushovski constructions are not MSmeasurable. In fact, for ω -categorical MSmeasurable structures, $F(\emptyset) = \mathcal{O}(\emptyset)$.

Recently, I proved that satisfying the strong independence theorem does not imply $F(\emptyset) = \mathcal{O}(\emptyset)$.

$\mathsf{SIT} \not\Rightarrow F(\emptyset) = \mathcal{O}(\emptyset)$

There are supersimple ω -categorical Hrushovski constructions satisfying the strong independence theorem but still with $F(\emptyset) \subseteq \mathcal{O}(\emptyset)$.

Open questions:

8	Refe

- [4]
- [5]

(7) Ongoing work

(1) Is there any supersimple ω -categorical not one-based Hrushovski construction for which $F(\emptyset) = \mathcal{O}(\emptyset)$ (perhaps even MSmeasurable)?

(2) Is every ω -categorical MS-measurable structure one-based?

erences

[1] A. Chernikov, E. Hrushovski, A. Kruckman, K. Krupinski, S. Moconja, A. Pillay, and N. Ramsey. Invariant measures in simple and in small theories. 2021. arXiv: 2105.07281 [math.LO].

A. Chevalier and E. Hrushovski. Piecewise Interpretable Hilbert Spaces. arXiv. 2021.

R. Elwes and D. Macpherson. "A survey of asymptotic classes and measurable structures". In: Model Theory with Applications to Algebra and Analysis. Vol. 2. London Mathematical Society Lecture Note Series. CUP, 2008, pp. 125-160.

C. Jahel and T. Tsankov. "Invariant measures on products and on the space of linear orders". In: Journal de l'École polytechnique – Mathématiques 9 (2022), pp. 155–176.

D. Macpherson and C. Steinhorn. "One-dimensional asymptotic classes of finite structures". In: Transactions of the American Mathematical Society 360.1 (2008), pp. 411–448.