Invariant Keisler Measures in ω-categorical Hrushovski constructions

By Paolo Marimon, p.marimon19@imperial.ac.uk

(1) Two notions of smallness

Working in a structure \mathcal{M}, there are two natural ways in which we may say that the set defined by the formula $\phi(x, a)$ is "small":
$\boldsymbol{F}(\emptyset) \quad \phi(x, a)$ forks over \emptyset. Call $F(\emptyset)$ the set of such formulas;
$\mathcal{O}(\emptyset) \phi(x, a)$ is universally measure zero. i.e. it has measure zero for any invariant Keisler measure. Call $\mathcal{O}(\emptyset)$ the set of such formulas

For stable theories, $F(\emptyset)=\mathcal{O}(\emptyset)$. This should also be the case for NIP theories.

Until the recent counterexamples from [1], it was an open question whether this equality always holds in simple theories. It is natural to ask whether the equality holds for ω-categorical simple structures

I proved that for various classes of supersimple ω categorical Hrushovski constructions $F(\emptyset) \subsetneq \mathcal{O}(\emptyset)$. These are the first known ω-categorical examples of this phenomenon.

2) Invariant Keisler Measures

A Keisler measure on M is a finitely additive probability measure on its definable subsets. We are interested in measures invariant under automorphisms:

$$
\mu(X)=\mu(\sigma(X)) \text { for } \sigma \in \operatorname{Aut}(M)
$$

There is a correspondence between Keisler measures and regular Borel probability measures on the space $S_{x}(M)$.

The measure μ is ergodic if for any Borel A,
$\mu(A \Delta \sigma(A))=0 \quad \forall \sigma \in \operatorname{Aut}(M) \Rightarrow \mu(A)=0$ or 1 .
Ergodic measures are better behaved, and yield an ergodic decomposition of any invariant Keisler measure:

$$
\mu(A)=\int_{\operatorname{Erg}(M)} \nu(A) \mathrm{d} \mathfrak{m}(\nu)
$$

(3) Weak Algebraic Independence and Probabilistic Independence

We say that $A, B \subseteq \mathcal{M}^{e q}$ are weakly algebraically independent if $\operatorname{acl}^{e q}(A) \cap \operatorname{acl}^{e q}(B)=$ $\operatorname{acl}^{e q}(\emptyset)$. We write $A \downarrow^{\mathrm{a}} B$.

For ω-categorical structures, weak algebraic independence induces a form of probabilistic independence when looking at ergodic measures:

Probabilistic independence theorem [4]

Let $\mathcal{M}^{e q}$ be ω-categorical with $\operatorname{acl}^{e q}(\emptyset)=\operatorname{dcl}^{e q}(\emptyset)$. Let μ be an ergodic measure and a, b be weakly algebraically independent. Then, for any formulas $\phi(x, y), \psi(x, z)$,
$\mu(\phi(x, a) \wedge \psi(x, b))=\mu(\phi(x, a)) \mu(\psi(x, b))$.
Recently, [2] have generalised these results outside of the ω-categorical context.

(4) Strong Independence Theorem

 For simple structures, the Probablistic Independence Theorem yields a stronger version of the independence theorem over \emptyset when forking is the same as being universally measure zeroSay a and b are weakly algebraically indepen dent, $c_{0} \equiv c_{1}$ and $c_{0} \downarrow a, c_{1} \downarrow b$. Then, there is c^{*} such that $c^{*} \equiv_{a} c_{0}, c^{*} \equiv_{b} c_{1}, c^{*} \downarrow a b$.

In general, simple ω-categorical structures with $\operatorname{acl}^{e q}(\emptyset)=\operatorname{dcl}^{e q}(\emptyset)$ satisfy this for $a \downarrow b$. But in our result we have weak algebraic independence instead of non-forking independence.

5 Measures in ω-categorical Hrushovski constructions

Q: Are there simple ω-categorical structures with $F(\emptyset) \subsetneq \mathcal{O}(\emptyset)$?
Idea for a counterexample: A simple ω-categorical structure which does not satisfy the strong indepen dence theorem
Candidate: simple ω-categorical Hrushovski constructions.
Why? They are the only known example of supersimple ω-categorical not one-based structures (i.e. weak algebraic independence \neq non-forking independence). So we may be able to construct simple ones not satisfying the strong independence theorem (and indeed we are!).
In particular, we build an ω-categorical supersimple Hrushovski construction \mathcal{M} of $S U$-rank 2, which is a graph such that

$$
\text { - } \operatorname{acl}^{e q}(\emptyset)=\operatorname{dcl}^{e q}(\emptyset) .
$$

- Aut (M) acts transitively in the vertices of M
- There are no k-cycles for $k<6$.
- If a, b form an edge, $a \downarrow^{a} b$ (but not $a \downarrow b$).
- If a and c are at distance two from each other, then $a \downarrow c$.
- The formula $\phi(x, a)$ saying " x has distance two from $a^{\prime \prime}$ doesn't fork over the empty-set.
We can also build \mathcal{M} witnessing arbitrarily strong independent n-amalgamation properties.

In the way we built our graph, we can see that for \mathcal{M} to satisfy the strong independence theorem, it should contain pentagons!

But \mathcal{M} has no pentagons and so:
$F(\emptyset) \subsetneq \mathcal{O}(\emptyset)$ in ω-categorical simple structures
There are ω-categorical simple structures with $F(\emptyset) \subsetneq \mathcal{O}(\emptyset)$. In particular, various ω-categorical supersimple Hrushovski constructions witness this.

6) Non-MS-measurability

 An MS-measurable structure has a dimensionmeasure function which is definable and finite and where the dimension and the associated measures satisfy Fubini's theorem [5]Elwes and Macpherson [3] asked whether all ω-categorical supersimple structures of finite $S U$-rank are MS-measurable.

Supersimple ω-categorical finite rank and NOT

 MS-measurableThe same example shows that various ω categorical Hrushovski constructions are not MS measurable. In fact, for ω-categorical MS measurable structures, $F(\emptyset)=\mathcal{O}(\emptyset)$

7 Ongoing work

Recently, I proved that satisfying the strong independence theorem does not imply $F(\emptyset)=\mathcal{O}(\emptyset)$.

$\operatorname{SIT} \nRightarrow F(0)=O(0)$

There are supersimple ω-categorical Hrushovski constructions satisfying the strong independence theorem but still with $F(\emptyset) \subsetneq \mathcal{O}(\emptyset)$.
Open questions:
(1) Is there any supersimple ω-categorical not one-based Hrushovski construction for which $F(\emptyset)=\mathcal{O}(\emptyset)$ (perhaps even MS measurable)?
(2) Is every ω-categorical MS-measurable structure one-based?

8 References

[1] A. Chernikov, E. Hrushovski, A. Kruckman, K. Krupinski, S. Moconja, A. Pillay, and N. Ramsey. Invariant measures in simpl and in sm
[2] A. Chevalier and E. Hrushovski. Piecewise Interpretable Hilbert
Spaces. arXiv. 2021. spaces.
[3] R. Elwes and D. Macpherson. "A survey of asymptotic classes and measurable structures". In: Model Theory with Applicarions
to Algebra and Analysis. Vol. 2. London Mathematical Society Lecture Note Series. CUP, 2008, pp. 125-160.
[4] C. Jahel and T. Tsankov. "Invariant measures on products and on the space of linear orders". In: Journal de l'École polytechnique - Mathématiques 9 (2022), pp. 155-176.
[5] D. Macpherson and C. Steinhorn. "One-dimensional asymptotic classes of tinite structures. In: Transactions of the American

