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Motivation: Constraint Satisfaction Problems

Constraint Satisfaction Problems
τ = finite relational language.

Definition 1 (CSP(B))

Let B be a fixed structure.
CSP(B) is the following computational problem:

• INPUT: A finite τ -structure A;
• OUTPUT: Is there a homomorphism A → B?

• B is finite ⇒ CSP(B) is in NP;
• Many meaningful problems also for infinite B;
• We want to study the computational complexity of CSPs.
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Motivation: Constraint Satisfaction Problems

Examples I

Example 2 (n-colorability for graphs)
Let Kn be the complete graph on n verteces. Then,
• CSP(Kn) = n-colorability problem for graphs;
• NP-complete for n > 2 and in P for n = 2 (Karp 1972).

Example 3 (NOT ALL EQUAL SAT)
NAE-SAT is the following NP-complete problem (Schaefer 1978):
INPUT: P, a finite set of propositions. C, a finite set of disjunctions
of triplets from P;
OUTPUT: Is there an assignment of {TRUE, FALSE} to the
propositions in P so that each clause in C has at least one true and
one false proposition?
NAE-SAT=CSP(B) for B := ({0, 1}; NAE) for
NAE := {0, 1}3 \ {(1, 1, 1), (0, 0, 0)}.
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Motivation: Constraint Satisfaction Problems

Examples II
Example 4 (digraph acyclicity)
Consider (Q, <). Then,
• CSP(Q, <) = digraph acyclicity, i.e.

INPUT: a finite directed graph D;
OUTPUT Does D contain a finite directed cycle? This problem
is in P (indeed, can be solved in linear time) (Kahn 1962).

Example 5 (Solving arithmetic equations)
Consider the CSP(B) for

B := (Z; {0}, {1}, {(x, y, z)|x+ y = z}, {(x, y, z)|xy = z}).

Then, CSP(B) is deciding whether a given finite set of arithmetic
equations has a solution. Undecidable (Matijasevič 1977).
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Motivation: Constraint Satisfaction Problems

Polymorphisms I
For B finite, the complexity of CSP(B) can be captured by the
polymorphisms of B:

Definition 6 (Polymorphism)

Let f : Bn → B.
f is a polymorphism if it preserves all relations of B:a11

...
a1k

 , . . . ,

an1
...
ank

 ∈ RB ⇒

f(a11, . . . , a
n
1 )

...
f(a1k, . . . , a

n
k)

 ∈ RB.

We call Pol(B) the set of polymorphisms of B.
The polymorphism clone of B.
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Motivation: Constraint Satisfaction Problems

Polymorphisms II
• Unary polymorphism = homomorphism;
• Projections to one coordinate are always polymorphisms:

say that πi : Bn → B is a projection to the ith coordinate.
Then, fora11

...
a1k

 , . . . ,

an1
...
ank

 ∈ RB,

πi(a
1
1, . . . , a

n
1 )

...
πi(a

1
k, . . . , a

n
k)

 =

ai1
...
aik

 ∈ RB.

• Generalisation of automorphism groups.
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Motivation: Constraint Satisfaction Problems

Identities I
We are interested in identities satisfied by operations on B. We write
identities which hold universally using ≈. For example,

f(x, y) ≈ f(y, x)

denotes that f is commutative.

Definition 7 (h1-identity)

A height-one identity is an identity with exactly one function
symbol on each side

Example:
f(x, y, y) ≈ g(y, x, x)

Non-examples:

f(x, x, x) ≈ x, f(x, g(x, y), z) ≈ g(x, y).
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Motivation: Constraint Satisfaction Problems

Identities II
We say that a set of identities is trivial if it is satisfied by projections.
Example:

{f(x, x) ≈ f(x, y), f(x, f(y, z)) ≈ f(f(x, y), z)}.

Theorem 8 (Siggers 2010+Barto, Opršal, and Pinsker 2018+. . . )

Let B be finite. Then, exactly one of the following holds:
(H) All sets of h1-identites satisfied by polymorphisms in Pol(B) are

trivial;
(E) Pol(B) contains a 6-ary Siggers polymorphism s : B6 → B

such that
s(x, y, x, z, y, z) ≈ s(y, x, z, x, z, y).
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Motivation: Constraint Satisfaction Problems

CSP-dichotomy
• (H) implies that CSP(B) is NP-hard;
• Bulatov 2017 and Zhuk 2020 proved independently that (E)

implies that there is an algorithm in P solving CSP(B).
Hence, they proved the following, conjectured in (Feder and Vardi
1998):

Theorem 9 (Bulatov 2017; Zhuk 2020)

Let B be a finite relational structure. Then, CSP(B) is
• in P if and only if Pol(B) has a Syggers polymorphism;
• NP-complete, otherwise.

• If P ̸=NP, there are intermediate problems between P and
NP-complete (Ladner 1975);

• We can characterise computational complexity of CSPs in purely
algebraic terms.
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Motivation: Constraint Satisfaction Problems

What about infinite domain CSPs?

Question 1

Are there interesting classes of infinite structures for which the finite
domain techniques can be generalised?

Many techniques generalise (with a topological twist) to
ω-categorical structures.

These countable structures are characterised by their automorphism
groups being oligomorphic:
for each n < ω, Aut(B) ↷ Bn has finitely many orbits.

In order for there to be some hope of proving a CSP-dichotomy, we
will need to restrict this class a bit more . . .
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Motivation: Constraint Satisfaction Problems

Homogeneous structures

Definition 10 (homogeneous)

A countable structure B is homogeneous if any isomorphism between
finite substructures of B can be extended to an automorphism.

When a class of finite structures C forms a Fraïssé class we can build
a countable homogeneous structure B such that Age(B), i.e. its
class of finite substructures, is C. We call B the Fraïssé limit of C.

Examples 11

Homogeneous structure Fraïssé class

Random graph finite graphs

Generic △-free graph finite △-free graphs

(Q, <) finite linear orders
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Motivation: Constraint Satisfaction Problems

Finite boundedness

Definition 12 (Finite boundedness)

Homogeneous B is finitely bounded if there is a finite set F of
τ -structures such that

Age(B) = Forbemb(F).

All of the examples in the previous page are finitely bounded.

Definition 13 (Reduct)

Let A and B be structures with the same domain.
A is a reduct of B if all relations of A are first-order definable in B.
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Motivation: Constraint Satisfaction Problems

An example

Example 14 (Monochromatic triangle-free colouring, Burr 1976)
Graphs with edges coloured in red and blue not containing any
monochromatic triangle are a Fraïssé class.

So there is an associated (finitely bounded) universal homogeneous
{monochromatic triangle}-free 2-coloured graph C.

Let D be the reduct of C obtained by "forgetting the colours of the
edges".

CSP(D) is the NP-complete problem:
INPUT: A finite graph G;
OUTPUT: Can the edges of G be coloured so that there is no
monochromatic triangle?
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Motivation: Constraint Satisfaction Problems

The infinite-domain dichotomy conjecture
CSPs for (finite language) reducts of finitely bounded homogeneous
structures are in the class NP.

Conjecture 15 (Bodirsky & Pinsker)

Let B be a finite language reduct of a finitely bounded homogeneous
structure. Then, CSP(B) is either in P or NP-complete.

Again, to study CSP(B), it is important to understand Pol(B).
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Minimal operations

Operation clones

Definition 16 (Operation clone)

Let B denote a set. For n ∈ N, O(n) denotes the set BBn
of

functions Bn → B. We write

O :=
⋃
n∈N

O(n).

An operation clone over B is a set C ⊆ O such that
• C contains all projections;
• C is closed under composition: for f ∈ C ∩ O(n) and
g1, . . . , gn ∈ C ∩ O(m), f(g1, . . . , gn), given by

(x1, . . . , xm) 7→ f(g1(x1, . . . , xm), . . . , gn(x1, . . . , xm)),

is in C ∩ O(m).
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Minimal operations

Topology
We equip O(n) with the product topology and O with the sum
topology, where B was endowed with the discrete topology.

Given S ⊆ O, ⟨S⟩ denotes the smallest operation clone containing S.
Meanwhile, S denotes the closure of S in O with respect to the
topology we described.

For S ⊆ O, let Inv(S) be the structure on B whose relations are
exactly the relations on B invariant under all f ∈ S. We have that

⟨S⟩ = Pol(Inv(S)),
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Minimal operations

Minimal clones (and operations)
Let D ⊋ C be closed subclones of O.

Definition 17 (Minimal clone)

We say that D is minimal above C if there is no closed clone E such
that C ⊊ E ⊊ D.

Definition 18 (almost minimal)

The k-ary operation f ∈ D \ C is almost minimal above C if for
each r < k,

⟨C ∪ {f}⟩ ∩ O(r) = C ∩ O(r).

Definition 19 (Minimal operation)

The k-ary operation f ∈ D \ C is minimal above C if it is almost
minimal and for all h ∈ ⟨C ∪ {f}⟩ \ C, f ∈ ⟨C ∪ {h}⟩.
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Minimal operations

Relations between concepts

Fact 20
There is a correspondence between closed clones which are minimal
above C and closed clones of the form ⟨C ∪ {f}⟩ for f minimal.

• When B is finite or ω-categorical in a finite language, for any
closed C ⊋ ⟨Aut(B)⟩, there is D minimal such that

⟨Aut(B)⟩ ⊊ D ⊆ C;

• For any G ↷ B and C ⊋ ⟨G⟩, there are almost minimal
operations above ⟨G⟩ in C.
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Minimal operations

Why care about minimal polymorphisms?

Definition 21 (Essentially unary and essential operations)

f is essentially unary if there is unary g and 1 ≤ i ≤ k such that

f(x1, . . . , xk) ≈ g(xi).

Otherwise, f is essential.

• To prove that CSP(B) is in P , we often need to find some
essential operation of low arity.

• Pol(B) will contain minimal operations above ⟨Aut(B)⟩;

• We prove that for B ω-categorical with CSP(B) in P we can
always find a binary essential operation!
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Minimal operations

Some terminology for operations
We define some operations in virtue of the identities they satisfy:
• Ternary quasi-majority:

m(x, x, y) ≈ m(x, y, x) ≈ m(y, x, x) ≈ m(x, x, x);

• Quasi-Malcev:

M(x, y, y) ≈ M(y, y, x) ≈ M(x, x, x);

• A quasi-semiprojection is a k-ary f such that there is an
i ∈ {1, . . . , k} and a unary operation g such that whenever at
least two of the aj equal each other,

f(a1, . . . , ak) = g(ai).
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Minimal operations

Rosenberg’s five types theorem
The following generalises Rosenberg’s five types theorem (Rosenberg
1986) for idempotent algebras (i.e. the case of G = {1}):

Theorem 22 (Five types theorem, Bodirsky and Chen 2007)

Let G ↷ B. Let f be minimal above ⟨G⟩.Then, up to permuting its
variables, f is of one of the following five types:

1 a unary function;
2 a binary function;
3 a ternary quasi-majority operation;
4 a quasi-Malcev operation;
5 a k-ary quasi-semiprojection for some k ≥ 3.
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Minimal operations

Some improvements in the oligomorphic case

Theorem 23 (Four types, oligomorphic case, Bodirsky and Chen
2007; Bodirsky 2021)

Let G ↷ B be an oligomorphic permutation group on a countably
infinite B. Let f be minimal above ⟨G⟩. Then, f is of one of the
following four types:

1 a unary function;
2 a binary function;
3 a ternary quasi-majority operation;
4 a k-ary quasi-semiprojection for some 3 ≤ k ≤ 2r − s, where r is

the number of G-orbitals and s is the number of G-orbits.

• No quasi-Malcev;
• Upper bound on arity of quasi-semiprojections.
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Results

Our results I

Theorem 24 (Three Types Theorem, Marimon and Pinsker 2024)

Let G ↷ B be such that G is not a Boolean group acting freely on
B. Let f be almost minimal above ⟨G⟩. Then, f is of one of:

1 a unary function;
2 a binary function;
3 a ternary quasi-majority operation;
4 a k-ary orbit-semiprojection for 3 ≤ k ≤ s.

f is an orbit-semiprojection if there is an i ∈ {1, . . . , k} and a unary
operation g ∈ G such that whenever at least two of the aj lie in
the same orbit,

f(a1, . . . , ak) = g(ai).
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Results

Our results II
• We classify almost minimal operations. Recall

minimal ⇒ almost minimal;

• This is a strict improvement on Bodirsky and Chen 2007:
Oligomorphic permutation groups never act freely;

• We can classify almost minimal operations above ⟨G⟩ for any
permutation group. The remaining two cases are

• G is a Boolean group acting freely on B with |G| > 2;
• Z2 acting freely on B.

• We will completely specify the possible behaviour of f on orbits;

• We also have more information on the binary operations.
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Our results III
Theorem 25 (Boolean case, Marimon and Pinsker 2024)

Let G ↷ B be a Boolean group acting freely on B with s-many orbits
and |G| > 2. Let f be an almost minimal operation above ⟨G⟩. Then,
f is of one of the following types:

1 f is unary;
2 f is binary;
3 f is a ternary twisted minority;
4 f is a k-ary orbit-semiprojection for 3 ≤ k ≤ s.

A twisted minority is a ternary operation such that for all β ∈ G,

m(y, x, βx) ≈ m(x, βx, y) ≈ m(x, y, βx) ≈ m(βy, βy, βy).
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Our results IV
Theorem 26 (Z2 case, Marimon and Pinsker 2024)

Let Z2 act freely on B with s-many orbits. Let f be an almost minimal
operation above ⟨Z2⟩. Then, f is of one of the following types:

1 f is unary;

2 f is a ternary twisted minority;

3 f is an odd majority;

4 f is, up to permuting its variables, an odd Malcev;

5 f is a k-ary orbit-semiprojection for 2 ≤ k ≤ s.

An odd majority m is a quasi-majority such that for γ the non-identity element in
Z2,

m(y, x, γx) ≈ m(x, γx, y) ≈ m(x, y, γx) ≈ m(y, y, y).

An odd Malcev is a quasi-Malcev such that M(x, γy, z) is an odd majority.

Paolo Marimon, Michael Pinsker Minimal operations over permutation groups



Results

On the existence of these operations

• For |Orb(G)| ≤ 2, f can only be unary or binary;

• For |Orb(G)| ≥ 3, the non-binary operations in our classifications
always exist as almost minimal above ⟨G⟩;

• For |Orb(G)| ≥ 3, orbit-semiprojections always exist as minimal
above ⟨G⟩;

• Twisted minorities, odd majorities and odd Malcev operations
should frequently not exist as minimal;

• e.g. |Orb(G)| = 3 ⇒ no twisted minority minimal above ⟨G⟩;
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An example of a proof

Lemma 27 (not free ⇒ no quasi-Malcev)

Let G ↷ B be such that the action of G on B is not free. Then, no almost
minimal function over ⟨G⟩ can be a quasi-Malcev operation.

Proof.
Take α ∈ G, a, b, c ∈ B such that α(a) = a, α(b) = c. Suppose M(x, y, z)
is almost minimal and quasi-Malcev. Then, h(x, y) = M(x, αx, y) is
essentially unary. If it depends on the first argument,

M(a, a, a) = h(a, a) = h(a, b) = M(a, a, b) = M(b, b, b) ,

contradicting injectivity of M(x, x, x) ∈ ⟨G⟩. Similarly, if h(x, y) depends
on the second argument,

M(c, c, c) = M(a, a, c) = h(a, c) = h(b, c) = M(b, c, c) = M(b, b, b) ,

contradicting injectivity of M(x, x, x) ∈ ⟨G⟩. Thus, h(x, y) depends on
both arguments, contradicting the almost minimality of M .
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A question of Bodirsky on binary polymorphisms

Definition 28
For B finite or ω-categorical, we say that B is a model complete
core if ⟨Aut(B)⟩ = End(B).

For CSPs it is sufficient to look at model complete cores.

Finding binary essential polymorphisms is very helpful in building
arguments for why a CSP is in P. In particular, in the open problems
section of his book on CSPs Bodirsky asks:

Question 2 (Question 24 in Bodirsky 2021)

Does every countably infinite ω-categorical model complete core with
an essential polymorphism also have a binary essential polymorphism?
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Results

A counterexample
Answer: NO, one can build an ω-categorical model complete core
whose polymorphism clone is ⟨Aut(B) ∪ {f}⟩, where B consists of
three infinite predicates partitioning a countably infinite set and f is a
3-ary orbit-semiprojection minimal above it.

• One needs Aut(B) to have at least 3 orbits for a
counterexample;

• We actually prove: whenever CSP(B) is not NP-hard,
Pol(B) has a binary essential polymorphism.
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Why problems in P lie above binary polymorphisms

Theorem 29 (Marimon and Pinsker 2024)

Suppose that B a finite or ω-categorical model complete core and
Aut(B) ↷ B is not the free action of a Boolean group on B (this is
always the case if B is ω-categorical). Suppose that CSP(B) is not
NP-hard. Then, Pol(B) contains a binary essential polymorphism.

• This result can be phrased in purely universal algebraic terms
(not relying on P ̸= NP );

Proof.
Suppose that Pol(B) ∩ O(2) = ⟨Aut(B)⟩ ∩ O(2). Then, all ternary
operations in C must be almost minimal. So Pol(B) ∩ O(3) consists
entirely of essentially unary operations and orbit-semiprojections. We
can then show that these will only satisfy trivial h1-identities. From
this we can prove that CSP(B) is NP-complete.
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Some thoughts on the presence of symmetry

• Our result is very false if one looks at rigid structures: even
on a two-element domain there are CSPs in P for structures
whose minimal polymorphism above ⟨1⟩ is a ternary majority (cf.
Schaefer 1978);

• Adding finitely many constants does not change the complexity of
a CSP. So people often do that when studying these problems;

• Indeed, many of the early results on finite domain CSPs rely on
adding constants for all elements of the structure, making it rigid
(this is less needed with modern techniques);

• Hence, if you study finite domain CSPs, these results can be
quite surprising.
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Problems for the future

• Do minimal twisted minorities, odd majorities and odd-Malcevs
ever exist?

• Can we find general conditions on G ↷ B showing these do not
exist as minimal above ⟨G⟩?

• Can we find general conditions on G ↷ B that imply that there
is no binary minimal operations above ⟨G⟩?

• Is there an ω-categorical structure M such there is no binary
minimal operation above ⟨Aut(M)⟩?
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An extra on binary operations I

Definition 30 (identity multrigraph)

C is a set of unary functions on B. The identity multigraph C⋆ is
the L-structure where L = {Ra|a ∈ B} with domain C, where for
α, β ∈ C,

Ra(α, β) if and only if αa = βa.

Let G ↷ B. A homomorphism of the identity multigraphs
Γ : G⋆ → G

⋆ is binary making if
• |Im(Γ)| > 1;
• Γ ̸= Fα for α ∈ G, where Fα(β) = αβ.
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An extra on binary operations II
Theorem 31 (Marimon and Pinsker 2024)

Let G ↷ B. There is a one-to-one correspondence between:
• binary making homomorphism Γ : G⋆ → G

⋆;
• binary f almost minimal above ⟨G⟩.

This is given by the map Γ 7→ fΓ, where

fΓ(x, βx) := Γ(β)(x)

The existence of binary making homomorphism is non-trivial.

Question 3 (Something to play with)

Take your favourite permutation group G ↷ B. Does it have binary
making homomorphisms?
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