Minimal operations over permutation groups

Paolo Marimon Michael Pinsker

TU Wien
March 14, 2024

POCOCOP ERC Synergy Grant No. 101071674

Outline

(1) Motivation: Constraint Satisfaction Problems
(2) Minimal operations
(3) Results
(4) Bibliography

Constraint Satisfaction Problems

$\tau=$ finite relational language.
Definition $1(\operatorname{CSP}(B))$
Let B be a fixed structure.
$\operatorname{CSP}(B)$ is the following computational problem:

- INPUT: A finite τ-structure A;
- OUTPUT: Is there a homomorphism $A \rightarrow B$?
- B is finite $\Rightarrow \operatorname{CSP}(B)$ is in NP;
- Many meaningful problems also for infinite B;
- We want to study the computational complexity of CSPs.

Examples I

Example 2 (n-colorability for graphs)

Let K_{n} be the complete graph on n verteces. Then,

- $\operatorname{CSP}\left(K_{n}\right)=n$-colorability problem for graphs;
- NP-complete for $n>2$ and in P for $n=2$ (Karp 1972).

Example 3 (NOT ALL EQUAL SAT)

NAE-SAT is the following NP-complete problem (Schaefer 1978):
INPUT: \mathcal{P}, a finite set of propositions. \mathcal{C}, a finite set of disjunctions of triplets from \mathcal{P};
OUTPUT: Is there an assignment of \{TRUE, FALSE\} to the propositions in \mathcal{P} so that each clause in \mathcal{C} has at least one true and one false proposition?
NAE-SAT $=\operatorname{CSP}(B)$ for $B:=(\{0,1\} ;$ NAE $)$ for
NAE $:=\{0,1\}^{3} \backslash\{(1,1,1),(0,0,0)\}$.

Examples II

Example 4 (digraph acyclicity)
Consider $(\mathbb{Q},<)$. Then,

- $\operatorname{CSP}(\mathbb{Q},<)=$ digraph acyclicity, i.e.

INPUT: a finite directed graph D;
OUTPUT Does D contain a finite directed cycle? This problem is in P (indeed, can be solved in linear time) (Kahn 1962).

Example 5 (Solving arithmetic equations)
Consider the $\operatorname{CSP}(B)$ for

$$
B:=(\mathbb{Z} ;\{0\},\{1\},\{(x, y, z) \mid x+y=z\},\{(x, y, z) \mid x y=z\})
$$

Then, $\operatorname{CSP}(B)$ is deciding whether a given finite set of arithmetic equations has a solution. Undecidable (Matijasevič 1977).

Polymorphisms I

For B finite, the complexity of $\operatorname{CSP}(B)$ can be captured by the polymorphisms of B :

Definition 6 (Polymorphism)

Let $f: B^{n} \rightarrow B$.
f is a polymorphism if it preserves all relations of B :

$$
\left(\begin{array}{c}
a_{1}^{1} \\
\vdots \\
a_{k}^{1}
\end{array}\right), \ldots,\left(\begin{array}{c}
a_{1}^{n} \\
\vdots \\
a_{k}^{n}
\end{array}\right) \in R^{B} \Rightarrow\left(\begin{array}{c}
f\left(a_{1}^{1}, \ldots, a_{1}^{n}\right) \\
\vdots \\
f\left(a_{k}^{1}, \ldots, a_{k}^{n}\right)
\end{array}\right) \in R^{B} .
$$

We call $\operatorname{Pol}(\boldsymbol{B})$ the set of polymorphisms of B.
The polymorphism clone of B.

Polymorphisms II

- Unary polymorphism = homomorphism;
- Projections to one coordinate are always polymorphisms: say that $\pi_{i}: B^{n} \rightarrow B$ is a projection to the i th coordinate. Then, for

$$
\left(\begin{array}{c}
a_{1}^{1} \\
\vdots \\
a_{k}^{1}
\end{array}\right), \ldots,\left(\begin{array}{c}
a_{1}^{n} \\
\vdots \\
a_{k}^{n}
\end{array}\right) \in R^{B},\left(\begin{array}{c}
\pi_{i}\left(a_{1}^{1}, \ldots, a_{1}^{n}\right) \\
\vdots \\
\pi_{i}\left(a_{k}^{1}, \ldots, a_{k}^{n}\right)
\end{array}\right)=\left(\begin{array}{c}
a_{1}^{i} \\
\vdots \\
a_{k}^{i}
\end{array}\right) \in R^{B} .
$$

- Generalisation of automorphism groups.

Identities |

We are interested in identities satisfied by operations on B. We write identities which hold universally using \approx. For example,

$$
f(x, y) \approx f(y, x)
$$

denotes that f is commutative.

Definition 7 (h1-identity)

A height-one identity is an identity with exactly one function symbol on each side

Example:

$$
f(x, y, y) \approx g(y, x, x)
$$

Non-examples:

$$
f(x, x, x) \approx x, \quad f(x, g(x, y), z) \approx g(x, y)
$$

Identities II

We say that a set of identities is trivial if it is satisfied by projections. Example:

$$
\{f(x, x) \approx f(x, y), \quad f(x, f(y, z)) \approx f(f(x, y), z)\}
$$

Theorem 8 (Siggers 2010+Barto, Opršal, and Pinsker 2018+...)

Let B be finite. Then, exactly one of the following holds:
(H) All sets of h1-identites satisfied by polymorphisms in $\operatorname{Pol}(B)$ are trivial;
(E) $\operatorname{Pol}(B)$ contains a 6-ary Siggers polymorphism $s: B^{6} \rightarrow B$ such that

$$
s(x, y, x, z, y, z) \approx s(y, x, z, x, z, y)
$$

CSP-dichotomy

- (H) implies that $\operatorname{CSP}(B)$ is NP-hard;
- Bulatov 2017 and Zhuk 2020 proved independently that (E) implies that there is an algorithm in P solving $\operatorname{CSP}(B)$.
Hence, they proved the following, conjectured in (Feder and Vardi 1998):

Theorem 9 (Bulatov 2017; Zhuk 2020)

Let B be a finite relational structure. Then, $\operatorname{CSP}(B)$ is

- in P if and only if $\operatorname{Pol}(B)$ has a Syggers polymorphism;
- NP-complete, otherwise.
- If $P \neq N P$, there are intermediate problems between P and NP-complete (Ladner 1975);
- We can characterise computational complexity of CSPs in purely algebraic terms.

What about infinite domain CSPs?

Question 1

Are there interesting classes of infinite structures for which the finite domain techniques can be generalised?

Many techniques generalise (with a topological twist) to $\boldsymbol{\omega}$-categorical structures.

These countable structures are characterised by their automorphism groups being oligomorphic: for each $n<\omega, \operatorname{Aut}(B) \curvearrowright B^{n}$ has finitely many orbits.

In order for there to be some hope of proving a CSP-dichotomy, we will need to restrict this class a bit more ...

Homogeneous structures

Definition 10 (homogeneous)

A countable structure B is homogeneous if any isomorphism between finite substructures of B can be extended to an automorphism.

When a class of finite structures \mathcal{C} forms a Fraïssé class we can build a countable homogeneous structure B such that $\operatorname{Age}(\boldsymbol{B})$, i.e. its class of finite substructures, is \mathcal{C}. We call B the Fraïssé limit of \mathcal{C}.
Examples 11

Homogeneous structure	Fraïssé class
Random graph	finite graphs
Generic \triangle-free graph	finite \triangle-free graphs
$(\mathbb{Q},<)$	finite linear orders

Finite boundedness

Definition 12 (Finite boundedness)

Homogeneous B is finitely bounded if there is a finite set \mathcal{F} of τ-structures such that

$$
\operatorname{Age}(B)=\operatorname{Forb}^{\mathrm{emb}}(\mathcal{F})
$$

All of the examples in the previous page are finitely bounded.

Definition 13 (Reduct)

Let A and B be structures with the same domain.
A is a reduct of B if all relations of A are first-order definable in B.

An example

Example 14 (Monochromatic triangle-free colouring, Burr 1976)
Graphs with edges coloured in red and blue not containing any monochromatic triangle are a Fraïssé class.

So there is an associated (finitely bounded) universal homogeneous \{monochromatic triangle\}-free 2 -coloured graph C.

Let D be the reduct of C obtained by "forgetting the colours of the edges".
$\operatorname{CSP}(D)$ is the NP-complete problem:
INPUT: A finite graph G;
OUTPUT: Can the edges of G be coloured so that there is no monochromatic triangle?

The infinite-domain dichotomy conjecture

CSPs for (finite language) reducts of finitely bounded homogeneous structures are in the class NP.

Conjecture 15 (Bodirsky \& Pinsker)
Let B be a finite language reduct of a finitely bounded homogeneous structure. Then, $\operatorname{CSP}(B)$ is either in P or NP-complete.

Again, to study $\operatorname{CSP}(B)$, it is important to understand $\operatorname{Pol}(B)$.

Operation clones

Definition 16 (Operation clone)

Let B denote a set. For $n \in \mathbb{N}, \mathcal{O}^{(n)}$ denotes the set $B^{B^{n}}$ of functions $B^{n} \rightarrow B$. We write

$$
\mathcal{O}:=\bigcup_{n \in \mathbb{N}} \mathcal{O}^{(n)}
$$

An operation clone over B is a set $\mathcal{C} \subseteq \mathcal{O}$ such that

- \mathcal{C} contains all projections;
- \mathcal{C} is closed under composition: for $f \in \mathcal{C} \cap \mathcal{O}^{(n)}$ and $g_{1}, \ldots, g_{n} \in \mathcal{C} \cap \mathcal{O}^{(m)}, f\left(g_{1}, \ldots, g_{n}\right)$, given by

$$
\left(x_{1}, \ldots, x_{m}\right) \mapsto f\left(g_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, g_{n}\left(x_{1}, \ldots, x_{m}\right)\right)
$$

is in $\mathcal{C} \cap \mathcal{O}^{(m)}$.

Topology

We equip $\mathcal{O}^{(n)}$ with the product topology and \mathcal{O} with the sum topology, where B was endowed with the discrete topology.

Given $\mathcal{S} \subseteq \mathcal{O},\langle\mathcal{S}\rangle$ denotes the smallest operation clone containing \mathcal{S}. Meanwhile, $\overline{\mathcal{S}}$ denotes the closure of \mathcal{S} in \mathcal{O} with respect to the topology we described.

For $\mathcal{S} \subseteq \mathcal{O}$, let $\operatorname{Inv}(S)$ be the structure on B whose relations are exactly the relations on B invariant under all $f \in S$. We have that

$$
\overline{\langle\mathcal{S}\rangle}=\operatorname{Pol}(\operatorname{Inv}(\mathcal{S}))
$$

Minimal clones (and operations)

Let $\mathcal{D} \supsetneq \mathcal{C}$ be closed subclones of \mathcal{O}.
Definition 17 (Minimal clone)
We say that \mathcal{D} is minimal above \mathcal{C} if there is no closed clone \mathcal{E} such that $\mathcal{C} \subsetneq \mathcal{E} \subsetneq \mathcal{D}$.

Definition 18 (almost minimal)

The k-ary operation $f \in \mathcal{D} \backslash \mathcal{C}$ is almost minimal above \mathcal{C} if for each $r<k$,

$$
\overline{\langle\mathcal{C} \cup\{f\}\rangle} \cap \mathcal{O}^{(r)}=\mathcal{C} \cap \mathcal{O}^{(r)}
$$

Definition 19 (Minimal operation)

The k-ary operation $f \in \mathcal{D} \backslash \mathcal{C}$ is minimal above \mathcal{C} if it is almost minimal and for all $h \in \overline{\langle\mathcal{C} \cup\{f\}\rangle} \backslash \mathcal{C}, f \in \overline{\langle\mathcal{C} \cup\{h\}\rangle}$.

Relations between concepts

Fact 20

There is a correspondence between closed clones which are minimal above \mathcal{C} and closed clones of the form $\overline{\langle\mathcal{C} \cup\{f\}\rangle}$ for f minimal.

- When B is finite or ω-categorical in a finite language, for any closed $\mathcal{C} \supsetneq \overline{\langle\operatorname{Aut}(B)\rangle}$, there is \mathcal{D} minimal such that

$$
\overline{\langle\operatorname{Aut}(B)\rangle} \subsetneq \mathcal{D} \subseteq \mathcal{C}
$$

- For any $G \curvearrowright B$ and $\mathcal{C} \supsetneq \overline{\langle G\rangle}$, there are almost minimal operations above $\overline{\langle G\rangle}$ in \mathcal{C}.

Why care about minimal polymorphisms?

Definition 21 (Essentially unary and essential operations)
f is essentially unary if there is unary g and $1 \leq i \leq k$ such that

$$
f\left(x_{1}, \ldots, x_{k}\right) \approx g\left(x_{i}\right)
$$

Otherwise, f is essential.

- To prove that $\operatorname{CSP}(B)$ is in P, we often need to find some essential operation of low arity.
- $\operatorname{Pol}(B)$ will contain minimal operations above $\overline{\langle\operatorname{Aut}(B)\rangle}$;
- We prove that for $B \omega$-categorical with $\operatorname{CSP}(B)$ in P we can always find a binary essential operation!

Some terminology for operations

We define some operations in virtue of the identities they satisfy:

- Ternary quasi-majority:

$$
m(x, x, y) \approx m(x, y, x) \approx m(y, x, x) \approx m(x, x, x)
$$

- Quasi-Malcev:

$$
M(x, y, y) \approx M(y, y, x) \approx M(x, x, x)
$$

- A quasi-semiprojection is a k-ary f such that there is an $i \in\{1, \ldots, k\}$ and a unary operation g such that whenever at least two of the a_{j} equal each other,

$$
f\left(a_{1}, \ldots, a_{k}\right)=g\left(a_{i}\right)
$$

Rosenberg's five types theorem

The following generalises Rosenberg's five types theorem (Rosenberg 1986) for idempotent algebras (i.e. the case of $G=\{1\}$):

Theorem 22 (Five types theorem, Bodirsky and Chen 2007)

Let $G \curvearrowright B$. Let f be minimal above $\overline{\langle G\rangle}$. Then, up to permuting its variables, f is of one of the following five types:
(1) a unary function;
(2) a binary function;
(3) a ternary quasi-majority operation;
4. a quasi-Malcev operation;
(5) a k-ary quasi-semiprojection for some $k \geq 3$.

Some improvements in the oligomorphic case

Theorem 23 (Four types, oligomorphic case, Bodirsky and Chen 2007; Bodirsky 2021)

Let $G \curvearrowright B$ be an oligomorphic permutation group on a countably infinite B. Let f be minimal above $\overline{\langle G\rangle}$. Then, f is of one of the following four types:
(1) a unary function;
(2) a binary function;
(3) a ternary quasi-majority operation;
(4) a k-ary quasi-semiprojection for some $3 \leq k \leq 2 r-s$, where r is the number of G-orbitals and s is the number of G-orbits.

- No quasi-Malcev;
- Upper bound on arity of quasi-semiprojections.

Our results I

Theorem 24 (Three Types Theorem, Marimon and Pinsker 2024)

Let $G \curvearrowright B$ be such that G is not a Boolean group acting freely on B. Let f be almost minimal above $\overline{\langle G\rangle}$. Then, f is of one of:
(1) a unary function;
(2) a binary function;
(3) a ternary quasi majority operation;
(4) a k-ary orbit-semiprojection for $3 \leq k \leq s$.
f is an orbit-semiprojection if there is an $i \in\{1, \ldots, k\}$ and a unary operation $g \in \bar{G}$ such that whenever at least two of the $\boldsymbol{a}_{\boldsymbol{j}}$ lie in the same orbit,

$$
f\left(a_{1}, \ldots, a_{k}\right)=g\left(a_{i}\right)
$$

Our results II

- We classify almost minimal operations. Recall

$$
\text { minimal } \Rightarrow \text { almost minimal; }
$$

- This is a strict improvement on Bodirsky and Chen 2007: Oligomorphic permutation groups never act freely;
- We can classify almost minimal operations above $\overline{\langle G\rangle}$ for any permutation group. The remaining two cases are
- G is a Boolean group acting freely on B with $|G|>2$;
- \mathbb{Z}_{2} acting freely on B.
- We will completely specify the possible behaviour of f on orbits;
- We also have more information on the binary operations.

Our results III

Theorem 25 (Boolean case, Marimon and Pinsker 2024)

Let $G \curvearrowright B$ be a Boolean group acting freely on B with s-many orbits and $|G|>2$. Let f be an almost minimal operation above $\langle G\rangle$. Then, f is of one of the following types:
(1) f is unary;
(2) f is binary;
(3) f is a ternary twisted minority;
(4) f is a k-ary orbit-semiprojection for $3 \leq k \leq s$.

A twisted minority is a ternary operation such that for all $\beta \in G$,

$$
\mathfrak{m}(y, x, \beta x) \approx \mathfrak{m}(x, \beta x, y) \approx \mathfrak{m}(x, y, \beta x) \approx \mathfrak{m}(\beta y, \beta y, \beta y)
$$

Our results IV

Theorem 26 (\mathbb{Z}_{2} case, Marimon and Pinsker 2024)

Let \mathbb{Z}_{2} act freely on B with s-many orbits. Let f be an almost minimal operation above $\left\langle\mathbb{Z}_{2}\right\rangle$. Then, f is of one of the following types:
(1) f is unary;
(2) f is a ternary twisted minority;
(3) f is an odd majority;
(4) f is, up to permuting its variables, an odd Malcev;
(5) f is a k-ary orbit-semiprojection for $2 \leq k \leq s$.

An odd majority m is a quasi-majority such that for γ the non-identity element in \mathbb{Z}_{2},

$$
m(y, x, \gamma x) \approx m(x, \gamma x, y) \approx m(x, y, \gamma x) \approx m(y, y, y) .
$$

An odd Malcev is a quasi-Malcev such that $M(x, \gamma y, z)$ is an odd majority.

On the existence of these operations

- For $|\operatorname{Orb}(G)| \leq 2, f$ can only be unary or binary;
- For $|\operatorname{Orb}(G)| \geq 3$, the non-binary operations in our classifications always exist as almost minimal above $\overline{\langle G\rangle}$;
- For $|\operatorname{Orb}(G)| \geq 3$, orbit-semiprojections always exist as minimal above $\overline{\langle G\rangle}$;
- Twisted minorities, odd majorities and odd Malcev operations should frequently not exist as minimal;
- e.g. $|\operatorname{Orb}(G)|=3 \Rightarrow$ no twisted minority minimal above $\overline{\langle G\rangle}$;

An example of a proof

Lemma 27 (not free \Rightarrow no quasi-Malcev)

Let $G \curvearrowright B$ be such that the action of G on B is not free. Then, no almost minimal function over $\overline{\langle G\rangle}$ can be a quasi-Malcev operation.

Proof.

Take $\alpha \in G, a, b, c \in B$ such that $\alpha(a)=a, \alpha(b)=c$. Suppose $M(x, y, z)$ is almost minimal and quasi-Malcev. Then, $h(x, y)=M(x, \alpha x, y)$ is essentially unary. If it depends on the first argument,

$$
M(a, a, a)=h(a, a)=h(a, b)=M(a, a, b)=M(b, b, b)
$$

contradicting injectivity of $M(x, x, x) \in \overline{\langle G\rangle}$. Similarly, if $h(x, y)$ depends on the second argument,

$$
M(c, c, c)=M(a, a, c)=h(a, c)=h(b, c)=M(b, c, c)=M(b, b, b),
$$

contradicting injectivity of $M(x, x, x) \in \overline{\langle G\rangle}$. Thus, $h(x, y)$ depends on both arguments, contradicting the almost minimality of M.

A question of Bodirsky on binary polymorphisms

Definition 28

For B finite or ω-categorical, we say that B is a model complete core if $\overline{\langle\operatorname{Aut}(B)\rangle}=\operatorname{End}(B)$.

For CSPs it is sufficient to look at model complete cores.
Finding binary essential polymorphisms is very helpful in building arguments for why a CSP is in P. In particular, in the open problems section of his book on CSPs Bodirsky asks:

Question 2 (Question 24 in Bodirsky 2021)

Does every countably infinite ω-categorical model complete core with an essential polymorphism also have a binary essential polymorphism?

A counterexample

Answer: NO, one can build an ω-categorical model complete core whose polymorphism clone is $\overline{\langle\operatorname{Aut}(B) \cup\{f\}\rangle}$, where B consists of three infinite predicates partitioning a countably infinite set and f is a 3 -ary orbit-semiprojection minimal above it.

- One needs $\operatorname{Aut}(B)$ to have at least 3 orbits for a counterexample;
- We actually prove: whenever $\operatorname{CSP}(B)$ is not NP-hard, $\operatorname{Pol}(B)$ has a binary essential polymorphism.

Why problems in P lie above binary polymorphisms

Theorem 29 (Marimon and Pinsker 2024)

Suppose that B a finite or ω-categorical model complete core and $\operatorname{Aut}(B) \curvearrowright B$ is not the free action of a Boolean group on B (this is always the case if B is ω-categorical). Suppose that $\operatorname{CSP}(B)$ is not NP-hard. Then, $\operatorname{Pol}(B)$ contains a binary essential polymorphism.

- This result can be phrased in purely universal algebraic terms (not relying on $P \neq N P$);

Proof.

Suppose that $\operatorname{Pol}(B) \cap \mathcal{O}^{(2)}=\overline{\langle\operatorname{Aut}(B)\rangle} \cap \mathcal{O}^{(2)}$. Then, all ternary operations in \mathcal{C} must be almost minimal. So $\operatorname{Pol}(B) \cap \mathcal{O}^{(3)}$ consists entirely of essentially unary operations and orbit-semiprojections. We can then show that these will only satisfy trivial $h 1$-identities. From this we can prove that $\operatorname{CSP}(B)$ is NP-complete.

Some thoughts on the presence of symmetry

- Our result is very false if one looks at rigid structures: even on a two-element domain there are CSPs in P for structures whose minimal polymorphism above $\langle 1\rangle$ is a ternary majority (cf. Schaefer 1978);
- Adding finitely many constants does not change the complexity of a CSP. So people often do that when studying these problems;
- Indeed, many of the early results on finite domain CSPs rely on adding constants for all elements of the structure, making it rigid (this is less needed with modern techniques);
- Hence, if you study finite domain CSPs, these results can be quite surprising.

Problems for the future

- Do minimal twisted minorities, odd majorities and odd-Malcevs ever exist?
- Can we find general conditions on $G \curvearrowright B$ showing these do not exist as minimal above $\overline{\langle G\rangle}$?
- Can we find general conditions on $G \curvearrowright B$ that imply that there is no binary minimal operations above $\overline{\langle G\rangle}$?
- Is there an ω-categorical structure \mathcal{M} such there is no binary minimal operation above $\overline{\langle\operatorname{Aut}(M)\rangle}$?

Bibliography I

围 Barto，Libor，Jakub Opršal，and Michael Pinsker（2018）．＂The wonderland of reflections＂．In：Israel Journal of Mathematics 223．1，pp．363－398．
目 Bodirsky，Manuel（2021）．Complexity of infinite－domain constraint satisfaction．Vol．52．Cambridge University Press．
R Bodirsky，Manuel and Hubie Chen（2007）．＂Oligomorphic clones＂． In：Algebra Universalis 57，pp．109－125．
国 Bulatov，Andrei A（2017）．＂A dichotomy theorem for nonuniform CSPs＂．In： 2017 IEEE 58th Annual Symposium on Foundations of Computer Science（FOCS）．IEEE，pp．319－330．
国 Burr，Stefan（1976）．＂Folklore result＂．In：Computers and intractability（1979）．Ed．by Michael R Garey and David S Johnson．Personally communicated to M．R．Garey and D．S．Johnson．

Bibliography II

围 Feder，Tomás and Moshe Y Vardi（1998）．＂The computational structure of monotone monadic SNP and constraint satisfaction：A study through Datalog and group theory＂．In：SIAM Journal on Computing 28．1，pp．57－104．
目 Kahn，Arthur B（1962）．＂Topological sorting of large networks＂． In：Communications of the ACM 5．11，pp．558－562．
睩 Karp，Richard M．（1972）．＂Reducibility among Combinatorial Problems＂．In：Complexity of Computer Computations．Ed．by Raymond E．Miller，James W．Thatcher，and Jean D．Bohlinger． Boston，MA：Springer US，pp．85－103．ISBN：978－1－4684－2001－2． DOI：10．1007／978－1－4684－2001－2＿9．URL： https：／／doi．org／10．1007／978－1－4684－2001－2＿9．
E Ladner，Richard E（1975）．＂On the structure of polynomial time reducibility＂．In：Journal of the ACM（JACM）22．1，pp．155－171．

Bibliography III

國 Marimon，Paolo and Michael Pinsker（2024）．＂Minimal operations over permutation groups＂．In preparation．
國 Matijasevič，Yu V（1977）．＂Some purely mathematical results inspired by mathematical logic＂．In：Logic，Foundations of Mathematics，and Computability Theory：Part One of the Proceedings of the Fifth International Congress of Logic， Methodology and Philosophy of Science，London，Ontario， Canada－1975．Springer，pp．121－127．
國 Rosenberg，Ivo G．（1986）．＂Minimal clones I：the five types＂．In： Lectures in universal algebra．Elsevier，pp．405－427．
圊 Schaefer，Thomas J（1978）．＂The complexity of satisfiability problems＂．In：Proceedings of the tenth annual ACM symposium on Theory of computing，pp．216－226．

Bibliography IV

國 Siggers, Mark H (2010). "A strong Mal'cev condition for locally finite varieties omitting the unary type". In: Algebra universalis 64.1-2, pp. 15-20.

围 Zhuk, Dmitriy (2020). "A proof of the CSP dichotomy conjecture". In: Journal of the ACM (JACM) 67.5, pp. 1-78.

An extra on binary operations I

Definition 30 (identity multrigraph)

\mathcal{C} is a set of unary functions on B. The identity multigraph \mathcal{C}^{\star} is the \mathcal{L}-structure where $\mathcal{L}=\left\{R_{a} \mid a \in B\right\}$ with domain \mathcal{C}, where for $\alpha, \beta \in \mathcal{C}$,

$$
R_{a}(\alpha, \beta) \text { if and only if } \alpha a=\beta a .
$$

Let $G \curvearrowright B$. A homomorphism of the identity multigraphs $\Gamma: G^{\star} \rightarrow \bar{G}^{\star}$ is binary making if

- $|\operatorname{Im}(\Gamma)|>1$;
- $\Gamma \neq F_{\alpha}$ for $\alpha \in \bar{G}$, where $F_{\alpha}(\beta)=\alpha \beta$.

An extra on binary operations II

Theorem 31 (Marimon and Pinsker 2024)

Let $G \curvearrowright B$. There is a one-to-one correspondence between:

- binary making homomorphism $\Gamma: G^{\star} \rightarrow \bar{G}^{\star}$;
- binary f almost minimal above $\overline{\langle G\rangle}$.

This is given by the map $\Gamma \mapsto f_{\Gamma}$, where

$$
f_{\Gamma}(x, \beta x):=\Gamma(\beta)(x)
$$

The existence of binary making homomorphism is non-trivial.
Question 3 (Something to play with)
Take your favourite permutation group $G \curvearrowright B$. Does it have binary making homomorphisms?

