Minimal operations over permutation groups

Paolo Marimon Michael Pinsker

TU Wien

March 14, 2024

POCOCOP ERC Synergy Grant No. 101071674

Paolo Marimon, Michael Pinsker

Minimal operations over permutation groups

1 Motivation: Constraint Satisfaction Problems

2 Minimal operations

Paolo Marimon, Michael Pinsker Minimal operations over permutation groups

Motivation: Constraint Satisfaction Problems

Constraint Satisfaction Problems

 $\tau = {\rm finite} \ {\rm relational} \ {\rm language}.$

Definition 1 (CSP(B))

Let B be a **fixed** structure.

 $\operatorname{CSP}(B)$ is the following computational problem:

- **INPUT**: A finite *τ*-structure *A*;
- **OUTPUT**: Is there a homomorphism $A \rightarrow B$?
- B is finite $\Rightarrow CSP(B)$ is in NP;
- Many meaningful problems also for infinite *B*;
- We want to study the computational complexity of CSPs.

Examples I

Example 2 (*n*-colorability for graphs)

Let K_n be the complete graph on n verteces. Then,

- $CSP(K_n) = n$ -colorability problem for graphs;
- NP-complete for n > 2 and in P for n = 2 (Karp 1972).

Example 3 (NOT ALL EQUAL SAT)

NAE-SAT is the following NP-complete problem (Schaefer 1978): INPUT: \mathcal{P} , a finite set of propositions. \mathcal{C} , a finite set of disjunctions of triplets from \mathcal{P} ;

OUTPUT: Is there an assignment of {TRUE, FALSE} to the propositions in \mathcal{P} so that each clause in \mathcal{C} has at least one true and one false proposition?

NAE-SAT=CSP(B) for $B := (\{0, 1\}; NAE)$ for NAE := $\{0, 1\}^3 \setminus \{(1, 1, 1), (0, 0, 0)\}.$

Examples II

Example 4 (digraph acyclicity)

Consider $(\mathbb{Q}, <)$. Then,

CSP(Q, <) = digraph acyclicity, i.e.
INPUT: a finite directed graph D;
OUTPUT Does D contain a finite directed cycle? This problem is in P (indeed, can be solved in linear time) (Kahn 1962).

Example 5 (Solving arithmetic equations) Consider the CSP(B) for

$$B := (\mathbb{Z}; \{0\}, \{1\}, \{(x, y, z) | x + y = z\}, \{(x, y, z) | xy = z\}).$$

Then, CSP(B) is deciding whether a given finite set of arithmetic equations has a solution. Undecidable (Matijasevič 1977).

Polymorphisms I

For B finite, the complexity of $\mathrm{CSP}(B)$ can be captured by the polymorphisms of B:

Definition 6 (Polymorphism)

Let $f: B^n \to B$. f is a polymorphism if it preserves all relations of B:

$$\begin{pmatrix} a_1^1\\ \vdots\\ a_k^1 \end{pmatrix}, \dots, \begin{pmatrix} a_1^n\\ \vdots\\ a_k^n \end{pmatrix} \in R^B \Rightarrow \begin{pmatrix} f(a_1^1, \dots, a_1^n)\\ \vdots\\ f(a_k^1, \dots, a_k^n) \end{pmatrix} \in R^B.$$

We call Pol(B) the set of polymorphisms of B. The polymorphism clone of B.

Polymorphisms II

- Unary polymorphism = homomorphism;
- Projections to one coordinate are always polymorphisms: say that $\pi_i: B^n \to B$ is a projection to the *i*th coordinate. Then, for

$$\begin{pmatrix} a_1^1\\ \vdots\\ a_k^1 \end{pmatrix}, \dots, \begin{pmatrix} a_1^n\\ \vdots\\ a_k^n \end{pmatrix} \in R^B, \begin{pmatrix} \pi_i(a_1^1, \dots, a_1^n)\\ \vdots\\ \pi_i(a_k^1, \dots, a_k^n) \end{pmatrix} = \begin{pmatrix} a_1^i\\ \vdots\\ a_k^i \end{pmatrix} \in R^B.$$

• Generalisation of automorphism groups.

Identities I

We are interested in identities satisfied by operations on B. We write identities which hold universally using \approx . For example,

 $f(x,y)\approx f(y,x)$

denotes that f is commutative.

Definition 7 (h1-identity)

A **height-one identity** is an identity with exactly one function symbol on each side

Example:

$$f(x, y, y) \approx g(y, x, x)$$

Non-examples:

$$f(x,x,x)\approx x, \qquad f(x,g(x,y),z)\approx g(x,y).$$

Paolo Marimon, Michael Pinsker

Minimal operations over permutation groups

Identities II

We say that a set of identities is **trivial** if it is satisfied by projections. **Example:**

 $\{f(x,x)\approx f(x,y),\quad f(x,f(y,z))\approx f(f(x,y),z)\}.$

Theorem 8 (Siggers 2010+Barto, Opršal, and Pinsker 2018+...)

Let B be finite. Then, exactly one of the following holds:

- (H) All sets of h1-identites satisfied by polymorphisms in Pol(B) are trivial;
- (E) $\operatorname{Pol}(B)$ contains a 6-ary Siggers polymorphism $s: B^6 \to B$ such that

$$s(x,y,x,z,y,z)\approx s(y,x,z,x,z,y).$$

CSP-dichotomy

- (H) implies that CSP(B) is NP-hard;
- Bulatov 2017 and Zhuk 2020 proved independently that (E) implies that there is an algorithm in P solving CSP(B).

Hence, they proved the following, conjectured in (Feder and Vardi 1998):

Theorem 9 (Bulatov 2017; Zhuk 2020)

Let B be a finite relational structure. Then, CSP(B) is

- in P if and only if Pol(B) has a Syggers polymorphism;
- NP-complete, otherwise.
- If P≠NP, there are intermediate problems between P and NP-complete (Ladner 1975);
- We can characterise computational complexity of CSPs in purely algebraic terms.

Paolo Marimon, Michael Pinsker

Minimal operations over permutation groups

Motivation: Constraint Satisfaction Problems

What about infinite domain CSPs?

Question 1

Are there interesting classes of infinite structures for which the finite domain techniques can be generalised?

Many techniques generalise (with a topological twist) to ω -categorical structures.

These countable structures are characterised by their automorphism groups being **oligomorphic**: for each $n < \omega$, $\operatorname{Aut}(B) \frown B^n$ has finitely many orbits.

In order for there to be some hope of proving a CSP-dichotomy, we will need to restrict this class a bit more \ldots

Homogeneous structures

Definition 10 (homogeneous)

A countable structure B is **homogeneous** if any isomorphism between finite substructures of B can be extended to an automorphism.

When a class of finite structures C forms a **Fraïssé class** we can build a countable homogeneous structure B such that Age(B), i.e. its class of finite substructures, is C. We call B the **Fraïssé limit** of C. Examples 11

Homogeneous structure	Fraïssé class
Random graph	finite graphs
Generic $ riangle$ -free graph	finite $ riangle$ -free graphs
$(\mathbb{Q},<)$	finite linear orders

Finite boundedness

Definition 12 (Finite boundedness)

Homogeneous B is finitely bounded if there is a finite set ${\mathcal F}$ of $\tau\text{-structures}$ such that

$$\operatorname{Age}(B) = \operatorname{Forb}^{\operatorname{emb}}(\mathcal{F}).$$

All of the examples in the previous page are finitely bounded.

Definition 13 (Reduct)

Let A and B be structures with the same domain. A is a **reduct** of B if all relations of A are first-order definable in B. An example

Example 14 (Monochromatic triangle-free colouring, Burr 1976) Graphs with edges coloured in red and blue not containing any monochromatic triangle are a Fraïssé class.

So there is an associated (finitely bounded) universal homogeneous $\{monochromatic triangle\}$ -free 2-coloured graph C.

Let D be the reduct of C obtained by "forgetting the colours of the edges".

CSP(D) is the NP-complete problem: INPUT: A finite graph G; OUTPUT: Can the edges of G be coloured so that there is no monochromatic triangle? Motivation: Constraint Satisfaction Problems

The infinite-domain dichotomy conjecture

CSPs for (finite language) reducts of finitely bounded homogeneous structures are in the class NP.

Conjecture 15 (Bodirsky & Pinsker)

Let B be a finite language reduct of a finitely bounded homogeneous structure. Then, CSP(B) is either in P or NP-complete.

Again, to study CSP(B), it is important to understand Pol(B).

Paolo Marimon, Michael Pinsker Minimal operations over permutation groups

Operation clones

Definition 16 (Operation clone)

Let B denote a set. For $n \in \mathbb{N}$, $\mathcal{O}^{(n)}$ denotes the set B^{B^n} of functions $B^n \to B$. We write

$$\mathcal{O} := \bigcup_{n \in \mathbb{N}} \mathcal{O}^{(n)}$$

An operation clone over B is a set $C \subseteq O$ such that

- C contains all projections;
- C is closed under composition: for $f \in C \cap O^{(n)}$ and $g_1, \ldots, g_n \in C \cap O^{(m)}$, $f(g_1, \ldots, g_n)$, given by

$$(x_1,\ldots,x_m)\mapsto f(g_1(x_1,\ldots,x_m),\ldots,g_n(x_1,\ldots,x_m)),$$

is in $\mathcal{C} \cap \mathcal{O}^{(m)}$.

Minimal operations over permutation groups

Topology

We equip $\mathcal{O}^{(n)}$ with the product topology and \mathcal{O} with the sum topology, where B was endowed with the discrete topology.

Given $S \subseteq O$, $\langle S \rangle$ denotes the smallest operation clone containing S. Meanwhile, \overline{S} denotes the closure of S in O with respect to the topology we described.

For $S \subseteq O$, let Inv(S) be the structure on B whose relations are exactly the relations on B invariant under all $f \in S$. We have that

 $\overline{\langle \mathcal{S} \rangle} = \operatorname{Pol}(\operatorname{Inv}(\mathcal{S})),$

Minimal operations

Minimal clones (and operations)

Let $\mathcal{D} \supsetneq \mathcal{C}$ be closed subclones of \mathcal{O} .

Definition 17 (Minimal clone)

We say that \mathcal{D} is **minimal above** \mathcal{C} if there is no closed clone \mathcal{E} such that $\mathcal{C} \subsetneq \mathcal{E} \subsetneq \mathcal{D}$.

Definition 18 (almost minimal)

The k-ary operation $f \in \mathcal{D} \setminus \mathcal{C}$ is almost minimal above \mathcal{C} if for each r < k,

$$\overline{\langle \mathcal{C} \cup \{f\} \rangle} \cap \mathcal{O}^{(r)} = \mathcal{C} \cap \mathcal{O}^{(r)}.$$

Definition 19 (Minimal operation)

The k-ary operation $f \in \mathcal{D} \setminus \mathcal{C}$ is minimal above \mathcal{C} if it is almost minimal and for all $h \in \overline{\langle \mathcal{C} \cup \{f\} \rangle} \setminus \mathcal{C}, f \in \overline{\langle \mathcal{C} \cup \{h\} \rangle}$.

Paolo Marimon, Michael Pinsker

Minimal operations over permutation groups

Relations between concepts

Fact 20

There is a correspondence between closed clones which are minimal above C and closed clones of the form $\overline{\langle C \cup \{f\} \rangle}$ for f minimal.

• When B is finite or ω -categorical in a finite language, for any closed $\mathcal{C} \supsetneq \overline{\langle \operatorname{Aut}(B) \rangle}$, there is \mathcal{D} minimal such that

$$\overline{\langle \operatorname{Aut}(B) \rangle} \subsetneq \mathcal{D} \subseteq \mathcal{C};$$

• For any $G \curvearrowright B$ and $\mathcal{C} \supseteq \overline{\langle G \rangle}$, there are almost minimal operations above $\overline{\langle G \rangle}$ in \mathcal{C} .

Minimal operations

Why care about minimal polymorphisms?

Definition 21 (Essentially unary and essential operations)

f is essentially unary if there is unary g and $1 \leq i \leq k$ such that

$$f(x_1,\ldots,x_k)\approx g(x_i).$$

Otherwise, f is essential.

- To prove that CSP(B) is in P, we often need to find some essential operation of low arity.
- $\operatorname{Pol}(B)$ will contain minimal operations above $\overline{\langle \operatorname{Aut}(B) \rangle}$;
- We prove that for $B \ \omega$ -categorical with CSP(B) in P we can always find a binary essential operation!

Minimal operations over permutation groups

Some terminology for operations

We define some operations in virtue of the identities they satisfy:

• Ternary quasi-majority:

 $m(x,x,y)\approx m(x,y,x)\approx m(y,x,x)\approx m(x,x,x);$

• Quasi-Malcev:

$$M(x,y,y)\approx M(y,y,x)\approx M(x,x,x);$$

A quasi-semiprojection is a k-ary f such that there is an i ∈ {1,...,k} and a unary operation g such that whenever at least two of the a_j equal each other,

$$f(a_1,\ldots,a_k)=g(a_i).$$

Paolo Marimon, Michael Pinsker Minimal operations over permutation groups

Minimal operations

Rosenberg's five types theorem

The following generalises Rosenberg's five types theorem (Rosenberg 1986) for idempotent algebras (i.e. the case of $G = \{1\}$):

Theorem 22 (Five types theorem, Bodirsky and Chen 2007)

Let $G \curvearrowright B$. Let f be minimal above $\overline{\langle G \rangle}$. Then, up to permuting its variables, f is of one of the following five types:

- **1** a unary function;
- 2 a binary function;
- 3 a ternary quasi-majority operation;
- **4** a quasi-Malcev operation;
- **5** a k-ary quasi-semiprojection for some $k \geq 3$.

Some improvements in the oligomorphic case

Theorem 23 (Four types, oligomorphic case, Bodirsky and Chen 2007; Bodirsky 2021)

Let $G \curvearrowright B$ be an oligomorphic permutation group on a countably infinite B. Let f be minimal above $\overline{\langle G \rangle}$. Then, f is of one of the following four types:

- **1** a unary function;
- **2** a binary function;
- **3** a ternary quasi-majority operation;
- ④ a k-ary quasi-semiprojection for some 3 ≤ k ≤ 2r − s, where r is the number of G-orbitals and s is the number of G-orbits.
- No quasi-Malcev;
- Upper bound on arity of quasi-semiprojections.

Our results I

Theorem 24 (Three Types Theorem, Marimon and Pinsker 2024)

- Let $G \curvearrowright B$ be such that G is not a Boolean group acting freely on B. Let f be almost minimal above $\overline{\langle G \rangle}$. Then, f is of one of:
 - 1 a unary function;
 - 2 a binary function;
 - 3 a ternary quasi-majority operation;
 - 4 a k-ary orbit-semiprojection for $3 \le k \le s$.

f is an orbit-semiprojection if there is an $i \in \{1, \ldots, k\}$ and a unary operation $g \in \overline{G}$ such that whenever at least two of the a_j lie in the same orbit,

$$f(a_1,\ldots,a_k)=g(a_i).$$

Our results II

• We classify almost minimal operations. Recall

minimal \Rightarrow almost minimal;

- This is a strict improvement on Bodirsky and Chen 2007: Oligomorphic permutation groups never act freely;
- We can classify almost minimal operations above $\overline{\langle G\rangle}$ for any permutation group. The remaining two cases are
 - G is a Boolean group acting freely on B with |G| > 2;
 - Z₂ acting freely on B.
- We will completely specify the possible behaviour of f on orbits;
- We also have more information on the binary operations.

Our results III

Theorem 25 (Boolean case, Marimon and Pinsker 2024)

Let $G \curvearrowright B$ be a Boolean group acting freely on B with s-many orbits and |G| > 2. Let f be an almost minimal operation above $\langle G \rangle$. Then, f is of one of the following types:

- **1** f is unary;
- **2** *f* is binary;
- **3** *f* is a ternary twisted minority;

4 f is a k-ary orbit-semiprojection for $3 \le k \le s$.

A twisted minority is a ternary operation such that for all $\beta \in G$,

$$\mathfrak{m}(y,x,\beta x) \approx \mathfrak{m}(x,\beta x,y) \approx \mathfrak{m}(x,y,\beta x) \approx \mathfrak{m}(\beta y,\beta y,\beta y).$$

Our results IV

Theorem 26 (\mathbb{Z}_2 case, Marimon and Pinsker 2024)

Let \mathbb{Z}_2 act freely on B with s-many orbits. Let f be an almost minimal operation above $\langle \mathbb{Z}_2 \rangle$. Then, f is of one of the following types:

- **1** f is unary;
- **2** f is a ternary twisted minority;
- **3** *f* is an odd majority;
- **4** *f* is, up to permuting its variables, an odd Malcev;
- **5** f is a k-ary orbit-semiprojection for $2 \le k \le s$.

An odd majority m is a quasi-majority such that for γ the non-identity element in $\mathbb{Z}_2,$

$$m(y,x,\gamma x)\approx m(x,\gamma x,y)\approx m(x,y,\gamma x)\approx m(y,y,y).$$

An odd Malcev is a quasi-Malcev such that $M(x, \gamma y, z)$ is an odd majority.

On the existence of these operations

- For $|Orb(G)| \le 2$, f can only be unary or binary;
- For |Orb(G)| ≥ 3, the non-binary operations in our classifications always exist as almost minimal above (G);
- For $|Orb(G)| \ge 3$, orbit-semiprojections always exist as minimal above $\overline{\langle G \rangle}$;
- Twisted minorities, odd majorities and odd Malcev operations should frequently not exist as minimal;
- e.g. $|Orb(G)| = 3 \Rightarrow$ no twisted minority minimal above $\overline{\langle G \rangle}$;

An example of a proof

Lemma 27 (not free \Rightarrow no quasi-Malcev)

Let $G \curvearrowright B$ be such that the action of G on B is not free. Then, no almost minimal function over $\overline{\langle G \rangle}$ can be a quasi-Malcev operation.

Proof.

Take $\alpha \in G, a, b, c \in B$ such that $\alpha(a) = a, \alpha(b) = c$. Suppose M(x, y, z) is almost minimal and quasi-Malcev. Then, $h(x, y) = M(x, \alpha x, y)$ is essentially unary. If it depends on the first argument,

$$M(a, a, a) = h(a, a) = h(a, b) = M(a, a, b) = M(b, b, b) ,$$

contradicting injectivity of $M(x, x, x) \in \overline{\langle G \rangle}$. Similarly, if h(x, y) depends on the second argument,

$$M(c,c,c) = M(a,a,c) = h(a,c) = h(b,c) = M(b,c,c) = M(b,b,b) ,$$

contradicting injectivity of $M(x, x, x) \in \overline{\langle G \rangle}$. Thus, h(x, y) depends on both arguments, contradicting the almost minimality of M. Paolo Marimon, Michael Pinsker Minimal operations over permutation groups

A question of Bodirsky on binary polymorphisms

Definition 28

For B finite or ω -categorical, we say that B is a model complete core if $\overline{\langle \operatorname{Aut}(B) \rangle} = \operatorname{End}(B)$.

For CSPs it is sufficient to look at model complete cores.

Finding binary essential polymorphisms is very helpful in building arguments for why a CSP is in P. In particular, in the open problems section of his book on CSPs Bodirsky asks:

Question 2 (Question 24 in Bodirsky 2021)

Does every countably infinite ω -categorical model complete core with an essential polymorphism also have a binary essential polymorphism?

A counterexample

Answer: NO, one can build an ω -categorical model complete core whose polymorphism clone is $\overline{\langle \operatorname{Aut}(B) \cup \{f\} \rangle}$, where *B* consists of three infinite predicates partitioning a countably infinite set and *f* is a 3-ary orbit-semiprojection minimal above it.

- One needs Aut(B) to have at least 3 orbits for a counterexample;
- We actually prove: whenever CSP(B) is not NP-hard, Pol(B) has a binary essential polymorphism.

Why problems in P lie above binary polymorphisms

Theorem 29 (Marimon and Pinsker 2024)

Suppose that B a finite or ω -categorical model complete core and Aut $(B) \curvearrowright B$ is not the free action of a Boolean group on B (this is always the case if B is ω -categorical). Suppose that CSP(B) is not NP-hard. Then, Pol(B) contains a binary essential polymorphism.

• This result can be phrased in purely universal algebraic terms (not relying on $P \neq NP$);

Proof.

Suppose that $\operatorname{Pol}(B) \cap \mathcal{O}^{(2)} = \overline{\langle \operatorname{Aut}(B) \rangle} \cap \mathcal{O}^{(2)}$. Then, all ternary operations in \mathcal{C} must be almost minimal. So $\operatorname{Pol}(B) \cap \mathcal{O}^{(3)}$ consists entirely of essentially unary operations and orbit-semiprojections. We can then show that these will only satisfy trivial h1-identities. From this we can prove that $\operatorname{CSP}(B)$ is NP-complete.

Some thoughts on the presence of symmetry

- Our result is very false if one looks at rigid structures: even on a two-element domain there are CSPs in P for structures whose minimal polymorphism above (1) is a ternary majority (cf. Schaefer 1978);
- Adding finitely many constants does not change the complexity of a CSP. So people often do that when studying these problems;
- Indeed, many of the early results on finite domain CSPs rely on adding constants for all elements of the structure, making it rigid (this is less needed with modern techniques);
- Hence, if you study finite domain CSPs, these results can be quite surprising.

Problems for the future

- Do minimal twisted minorities, odd majorities and odd-Malcevs ever exist?
- Can we find general conditions on $G \curvearrowright B$ showing these do not exist as minimal above $\overline{\langle G \rangle}$?
- Can we find general conditions on $G \frown B$ that imply that there is no binary minimal operations above $\overline{\langle G \rangle}$?
- Is there an ω -categorical structure \mathcal{M} such there is no binary minimal operation above $\overline{\langle \operatorname{Aut}(M) \rangle}$?

Bibliography

Bibliography I

- Barto, Libor, Jakub Opršal, and Michael Pinsker (2018). "The wonderland of reflections". In: *Israel Journal of Mathematics* 223.1, pp. 363–398.
- Bodirsky, Manuel (2021). Complexity of infinite-domain constraint satisfaction. Vol. 52. Cambridge University Press.
- Bodirsky, Manuel and Hubie Chen (2007). "Oligomorphic clones". In: *Algebra Universalis* 57, pp. 109–125.
- Bulatov, Andrei A (2017). "A dichotomy theorem for nonuniform CSPs". In: 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS). IEEE, pp. 319–330.
- Burr, Stefan (1976). "Folklore result". In: Computers and intractability (1979). Ed. by Michael R Garey and David S Johnson. Personally communicated to M. R. Garey and D.S.Johnson.

Bibliography

Bibliography II

- Feder, Tomás and Moshe Y Vardi (1998). "The computational structure of monotone monadic SNP and constraint satisfaction: A study through Datalog and group theory". In: SIAM Journal on Computing 28.1, pp. 57–104.
- Kahn, Arthur B (1962). "Topological sorting of large networks". In: *Communications of the ACM* 5.11, pp. 558–562.
- Karp, Richard M. (1972). "Reducibility among Combinatorial Problems". In: Complexity of Computer Computations. Ed. by Raymond E. Miller, James W. Thatcher, and Jean D. Bohlinger. Boston, MA: Springer US, pp. 85–103. ISBN: 978-1-4684-2001-2. DOI: 10.1007/978-1-4684-2001-2_9. URL:

https://doi.org/10.1007/978-1-4684-2001-2_9.

Ladner, Richard E (1975). "On the structure of polynomial time reducibility". In: Journal of the ACM (JACM) 22.1, pp. 155–171.

Bibliography III

- Marimon, Paolo and Michael Pinsker (2024). "Minimal operations over permutation groups". In preparation.
- Matijasevič, Yu V (1977). "Some purely mathematical results inspired by mathematical logic". In: Logic, Foundations of Mathematics, and Computability Theory: Part One of the Proceedings of the Fifth International Congress of Logic, Methodology and Philosophy of Science, London, Ontario, Canada-1975. Springer, pp. 121–127.
- Rosenberg, Ivo G. (1986). "Minimal clones I: the five types". In: Lectures in universal algebra. Elsevier, pp. 405–427.
- Schaefer, Thomas J (1978). "The complexity of satisfiability problems". In: *Proceedings of the tenth annual ACM symposium on Theory of computing*, pp. 216–226.

Bibliography

Bibliography IV

- Siggers, Mark H (2010). "A strong Mal'cev condition for locally finite varieties omitting the unary type". In: Algebra universalis 64.1-2, pp. 15–20.
- Zhuk, Dmitriy (2020). "A proof of the CSP dichotomy conjecture". In: *Journal of the ACM (JACM)* 67.5, pp. 1–78.

Bibliography

An extra on binary operations I

Definition 30 (identity multrigraph)

C is a set of unary functions on B. The **identity multigraph** C^* is the \mathcal{L} -structure where $\mathcal{L} = \{R_a | a \in B\}$ with domain C, where for $\alpha, \beta \in C$,

 $R_a(\alpha,\beta)$ if and only if $\alpha a = \beta a$.

Let $G \curvearrowright B$. A homomorphism of the identity multigraphs $\Gamma: G^\star \to \overline{G}^\star$ is binary making if

- $|Im(\Gamma)| > 1;$
- $\Gamma \neq F_{\alpha}$ for $\alpha \in \overline{G}$, where $F_{\alpha}(\beta) = \alpha\beta$.

An extra on binary operations II

Theorem 31 (Marimon and Pinsker 2024)

Let $G \curvearrowright B$. There is a one-to-one correspondence between:

- binary making homomorphism $\Gamma: G^{\star} \to \overline{G}^{\star}$;
- binary f almost minimal above $\overline{\langle G \rangle}$.

This is given by the map $\Gamma \mapsto f_{\Gamma}$, where

$$f_{\Gamma}(x,\beta x) := \Gamma(\beta)(x)$$

The existence of binary making homomorphism is non-trivial.

Question 3 (Something to play with)

Take your favourite permutation group $G \curvearrowright B$. Does it have binary making homomorphisms?