Universally measure zero non-forking formulas in simple ω -categorical Hrushovski constructions

Paolo Marimon

Imperial College London

Jan 24, 2023

Paolo Marimon $F(\emptyset) \subseteq O(\emptyset)$ in simple ω -categorical Hrushovski constructions

Outline

- 1 Invariant Keisler measures
- 2 Independence and Measures
- **3** Building an ω -categorical counterexample
- 4 Conclusions
- **5** Bibliography

Invariant Keisler measures

Definition 1 (Keisler measure)

A Keisler measure on M in the variable \overline{x} is a finitely additive probability measure on $\text{Def}_{\overline{x}}(M)$:

• $\mu(X \cup Y) = \mu(X) + \mu(Y)$ for disjoint X and Y;

•
$$\mu\left(M^{|\overline{x}|}\right) = 1.$$

We want to study Keisler measures **invariant** under automorphisms of \mathcal{M} :

$$\mu(X) = \mu(\sigma \cdot X)$$
 for $\sigma \in \operatorname{Aut}(M)$,

where $\sigma \cdot \phi(M^{|\overline{x}|}, \overline{a}) = \phi(M^{|\overline{x}|}, \sigma(\overline{a})).$

Invariant Keisler measures

Definition 1 (Keisler measure)

A Keisler measure on M in the variable \overline{x} is a finitely additive probability measure on $\text{Def}_{\overline{x}}(M)$:

• $\mu(X \cup Y) = \mu(X) + \mu(Y)$ for disjoint X and Y;

•
$$\mu\left(M^{|\overline{x}|}\right) = 1.$$

We want to study Keisler measures invariant under automorphisms of \mathcal{M} :

$$\mu(X) = \mu(\sigma \cdot X)$$
 for $\sigma \in Aut(M)$,

where $\sigma \cdot \phi(M^{|\overline{x}|}, \overline{a}) = \phi(M^{|\overline{x}|}, \sigma(\overline{a})).$

Two notions of smallness I: universally measure zero

Invariant Keisler measures yield a notion of "smallness":

Definition 2 (Universally measure zero, $\mathcal{O}(\emptyset)$)

A definable set $X \in \text{Def}_{\overline{X}}(M)$ is **universally measure zero** if $\mu(X) = 0$ for every invariant Keisler measure.

We call $\mathcal{O}_{\overline{\mathbf{x}}}(\mathbf{\emptyset})$ the set (ideal) of definable subsets of $M^{|\overline{\mathbf{x}}|}$ which are universally measure zero. Let $\mathcal{O}(\mathbf{\emptyset})$ be the union of all these sets.

Definition 3

We say that $I \subseteq \text{Def}_{\overline{x}}(M)$ is an **ideal** if:

- $\emptyset \in I$;
- If $Y \in I$ and $X \subseteq Y$, then $X \in I$; and
- If $X, Y \in I$, then $X \cup Y \in I$.

Two notions of smallness II: forking

Recall that **Forking** over \emptyset is another notion of smallness for definable sets. We call **F(\emptyset)** the set of definable sets forking over \emptyset .

Definition 4

A formula $\phi(x, b)$ **divides** over \emptyset if there is an indiscernible sequence $(b_i|i < \omega)$ with $b_0 = b$ and $k \in \omega$ such that $\{\phi(x, b_i)|i < \omega\}$ is *k*-inconsistent. A formula **forks** over \emptyset if it is in the ideal generated by dividing formulas (in some variable).

Motto of dividing:

A **small** set can be moved around by auto-morphisms.

Paolo Marimon

A **large** set will always overlap with itself no matter how much you try to move it.

 $F(\emptyset) \subsetneq \mathcal{O}(\emptyset)$ in simple ω -categorical Hrushovski constructions

How do $F(\emptyset)$ and $\mathcal{O}(\emptyset)$ interact?

We can compare these two ideals (in ω -saturated models of a given theory).

```
Theorem 5 (Folklore)
```

For any theory $F(\emptyset) \subseteq \mathcal{O}(\emptyset)$.

For stable theories $F(\emptyset) = O(\emptyset)$ (Chernikov et al. 2021). This should also be the case for NIP theories. It is for NIP ω -categorical theories by Braunfeld & M. (2022).

Invariant Keisler measures

$F(\emptyset) \subsetneq \mathcal{O}(\emptyset)$ in simple theories

For **simple** structures it was unknown whether $F(\emptyset) = O(\emptyset)$, until the counterexample given in

Invariant measures in simple and in small theories

Artem Chernikov* UCLA Alex Kruckman Wesleyan University Slavko Moconja[‡] University of Belgrade Nicholas Ramsey UCLA Ehud Hrushovski University of Oxford University of Wroclaw University of Notre Dame

May 18, 2021

Abstract

We give examples of (i) a simple theory with a formula (with parameters) which does not fork over \emptyset but has μ -measure of for every automorphism invariant Keisler measure μ , and (ii) a definable group G in a simple theory such that G is not definably amenable, i.e. there is no translation invariant Keisler measure on G.

What about simple ω -categorical structures?

It is natural to ask whether there are simple ω -categorical examples of $F(\emptyset) \subsetneq \mathcal{O}(\emptyset)$:

- The known example is not ω-categorical;
- In the "group analogue" of this question, there are no ω -categorical counterexamples (Chernikov et al 2021, Evans & Wagner 2000);
- An ω-categorical example would not be MS-measurable, answering negatively the following question of Elwes & Macpherson (2008):

Q: Is every ω -categorical supersimple structure *MS*-measurable?

Note: *MS*-measurable structures have a definable and finite **dimension-measure** function assigning a dimension and a measure to each definable set such that they satisfy Fubini's theorem.

More on MS-measurable structures

What about simple ω -categorical structures?

It is natural to ask whether there are simple ω -categorical examples of $F(\emptyset) \subsetneq \mathcal{O}(\emptyset)$:

- The known example is not ω -categorical;
- In the "group analogue" of this question, there are no ω-categorical counterexamples (Chernikov et al 2021, Evans & Wagner 2000);
- An ω-categorical example would not be MS-measurable, answering negatively the following question of Elwes & Macpherson (2008):

Q: Is every ω -categorical supersimple structure *MS*-measurable?

Note: *MS*-measurable structures have a definable and finite **dimension-measure** function assigning a dimension and a measure to each definable set such that they satisfy Fubini's theorem.

► More on MS-measurable structures

What about simple ω -categorical structures?

It is natural to ask whether there are simple ω -categorical examples of $F(\emptyset) \subsetneq \mathcal{O}(\emptyset)$:

- The known example is not ω -categorical;
- In the "group analogue" of this question, there are no ω-categorical counterexamples (Chernikov et al 2021, Evans & Wagner 2000);
- An ω -categorical example would not be *MS*-measurable, answering negatively the following question of Elwes & Macpherson (2008):

Q: Is every ω -categorical supersimple structure *MS*-measurable?

Note: *MS*-measurable structures have a definable and finite **dimension-measure** function assigning a dimension and a measure to each definable set such that they satisfy Fubini's theorem.

More on MS-measurable structures

Ergodic measures

There is a correspondence between Keisler measures on \mathcal{M} in the variable \overline{x} and regular Borel probability measures on $S_{\overline{x}}(M)$.

Definition 6 (Ergodic measure)

Invariant μ is **ergodic** if for any Borel $A \subseteq S_{\overline{X}}(M)$ we have that if for any $\tau \in Aut(M)$,

$$\mu(A \bigtriangleup \tau \cdot A) = 0,$$

then either $\mu(A) = 0$ or $\mu(A) = 1$.

Choosing *M* countable, we have an **ergodic decomposition** (Phelps 2011):

$$\mu(A) = \int_{\mathrm{Erg}_{\mathbb{X}}(M)} \nu(A) \mathrm{d}\mathfrak{m}(\nu).$$

Weak Algebraic Independence and Probabilistic independence

We say that $A, B \subseteq \mathcal{M}^{eq}$ are **weakly algebraically independent** (over \emptyset) if $\operatorname{acl}^{eq}(A) \cap \operatorname{acl}^{eq}(B) = \operatorname{acl}^{eq}(\emptyset)$. We write $A \, {\buildrel a}^a B$.

From Jahel & Tsankov (2022) we have:

Theorem 7 (Probabilistic Independence Theorem)

Let \mathcal{M}^{eq} be ω -categorical with $\operatorname{acl}^{eq}(\emptyset) = \operatorname{dcl}^{eq}(\emptyset)$. Let μ be an ergodic measure and a $\bigcup^{a} b$. Then, for any formulas $\phi(x, y), \psi(x, z)$,

$$\mu(\phi(x, a) \land \psi(x, b)) = \mu(\phi(x, a))\mu(\psi(x, b)).$$

Recently, Chevalier & Hrushovski (2022) have generalised these results outside of the ω -categorical context.

Weak Algebraic Independence and Probabilistic independence

We say that $A, B \subseteq \mathcal{M}^{eq}$ are **weakly algebraically independent** (over \emptyset) if $\operatorname{acl}^{eq}(A) \cap \operatorname{acl}^{eq}(B) = \operatorname{acl}^{eq}(\emptyset)$. We write $A \, {\buildrel a}^a B$.

From Jahel & Tsankov (2022) we have:

Theorem 7 (Probabilistic Independence Theorem)

Let \mathcal{M}^{eq} be ω -categorical with $\operatorname{acl}^{eq}(\emptyset) = \operatorname{dcl}^{eq}(\emptyset)$. Let μ be an ergodic measure and a \downarrow^{a} b. Then, for any formulas $\phi(x, y), \psi(x, z)$,

$$\mu(\phi(x, a) \land \psi(x, b)) = \mu(\phi(x, a))\mu(\psi(x, b)).$$

Recently, Chevalier & Hrushovski (2022) have generalised these results outside of the ω -categorical context.

Example: Random Graph

For A, B finite and disjoint subsets of the random graph R, let $\phi(x, A, B)$ be the formula saying "x is connected to all of A and none of B".

We study the ergodic measure μ and write $\mu(E(x, a)) = p$.

Disjoint sets of vertices are weakly algebraically independent, so:

$$\mu(\phi(x, A, B)) = p^{|A|} (1-p)^{|B|}.$$

Hence, by the **ergodic decomposition**:

Theorem 8 (Measures in the Random graph, Albert (1994)) For any invariant Keisler measure μ : Def_x(R) \rightarrow [0, 1], there is a unique probability measure \mathfrak{m} on [0, 1] such that for any $A, B \subseteq R$ finite and disjoint,

$$\mu(\phi(x, A, B)) = \int_0^1 p^{|A|} (1-p)^{|B|} \mathrm{d}\mathfrak{m}(p).$$

Paolo Marimon

 $F(\emptyset) \subsetneq \mathcal{O}(\emptyset)$ in simple ω -categorical Hrushovski constructions

Strong Independence Theorem

Theorem 9 (Strong Independence Theorem) Let \mathcal{M}^{eq} be simple, ω -categorical with $\operatorname{acl}^{eq}(\emptyset) = \operatorname{dcl}^{eq}(\emptyset)$ and $F(\emptyset) = \mathcal{O}(\emptyset)$. Then, it satisfies the **strong independence theorem** (over \emptyset): Say $a \, \, \, \, _{a}^{a} \, b, \, c_{0} \equiv c_{1} \, and \, c_{0} \, \, \, \downarrow \, a, \, c_{1} \, \, \, \downarrow \, b$. Then, there is c^{*} such that $c^{*} \equiv_{a} c_{0}, \, c^{*} \equiv_{b} c_{1}, \, and \, c^{*} \, \, \, \downarrow \, ab$.

In general, simple ω -categorical structures with $\operatorname{acl}^{eq}(\emptyset) = \operatorname{dcl}^{eq}(\emptyset)$ satisfy this for $a \perp b$. But here we have weak algebraic independence.

Paolo Marimon $F(\emptyset) \subsetneq O(\emptyset)$ in simple ω -categorical Hrushovski constructions

Proof of the Strong Independence Theorem

Let $\phi(x, a)$ and $\psi(x, b)$ isolate $\operatorname{tp}(c_0/a)$ and $\operatorname{tp}(c_1/b)$. By existence property of non-forking independence, there is $b' \equiv b$ such that $b' \perp a$. By the independence theorem over \emptyset , $\phi(x, a) \wedge \psi(x, b')$ doesn't fork over the \emptyset . By $F(\emptyset) = \mathcal{O}(\emptyset)$ and the ergodic decomposition, there is an ergodic measure μ such that

 $\mu(\phi(x,a) \wedge \psi(x,b')) > 0.$

But by the probabilistic independence theorem,

$$\mu(\phi(x, a) \land \psi(x, b')) = \mu(\phi(x, a))\mu(\psi(x, b'))$$
$$= \mu(\phi(x, a))\mu(\psi(x, b))$$
$$= \mu(\phi(x, a) \land \psi(x, b)).$$

Hence, $\mu(\phi(x, a) \land \psi(x, b)) > 0$ and so doesn't fork over \emptyset .

Strategy

Q: Are there simple ω -categorical structures with $F(\emptyset) \neq \mathcal{O}(\emptyset)$?

Idea for a counterexample: A simple ω -categorical structure which does not satisfy the strong independence theorem.

Candidate: Simple *w*-categorical Hrushovski constructions.

Why? They are the only known example of supersimple ω -categorical **not one-based** structures (i.e. weak algebraic independence \neq non-forking independence). So we may be able to construct simple ones not satisfying the strong independence theorem (and indeed we are!).

My example

We build an ω -categorical supersimple Hrushovski construction \mathcal{M} of SU-rank 2, which is a **graph** such that:

- $\operatorname{acl}^{eq}(\emptyset) = \operatorname{dcl}^{eq}(\emptyset)$ (by weak elimination of imaginaries).
- Aut(*M*) acts transitively on the vertices of *M*.
- There are no k-cycles for k < 6.
- If a, b form an edge, $a \perp^a b$ (but not $a \perp b$).
- If *a* and *c* are at distance two from each other, then $a \perp c$.

By the **strong independence theorem**, if $F(\emptyset) = \mathcal{O}(\emptyset)$, \mathcal{M} should contain pentagons! Hence, $F(\emptyset) \neq \mathcal{O}(\emptyset)$

Main results

Theorem 10 (Supersimple ω -categorical, $F(\emptyset) \neq \mathcal{O}(\emptyset)$)

There are supersimple ω -categorical structures with $F(\emptyset) \neq O(\emptyset)$. In particular, various ω -categorical Hrushovski constructions witness this. They can be chosen to have independent n amalgamation over algebraically closed sets for arbitrarily large n (or even for all n).

Corollary 11

There are supersimple ω -categorical structures which are not MS-measurable. As above, these can be chosen to have arbitrarily strong independent n-amalgamation properties.

Remark 12

There are some previous counterexamples of the latter by Evans (2022) which also use ω -categorical Hrushovski constructions. However, Evans' counterexamples rely on not satisfying some independent *n*-amalgamation property.

Main results

Theorem 10 (Supersimple ω -categorical, $F(\emptyset) \neq \mathcal{O}(\emptyset)$)

There are supersimple ω -categorical structures with $F(\emptyset) \neq O(\emptyset)$. In particular, various ω -categorical Hrushovski constructions witness this. They can be chosen to have independent n amalgamation over algebraically closed sets for arbitrarily large n (or even for all n).

Corollary 11

There are supersimple ω -categorical structures which are not MS-measurable. As above, these can be chosen to have arbitrarily strong independent n-amalgamation properties.

Remark 12

There are some previous counterexamples of the latter by Evans (2022) which also use ω -categorical Hrushovski constructions. However, Evans' counterexamples rely on not satisfying some independent *n*-amalgamation property.

Conclusions

What about a converse?

We may ask whether satisfying the **strong independence theorem** is sufficient for $F(\emptyset) = O(\emptyset)$.

I have a proof that an ω -categorical Hrushovski construction satisfying the strong independence theorem (and independent *n*-amalgamation for all *n*) is not MS-measurable. This uses a higher dimensional version of the probabilistic independence theorem in ω -categorical MS-measurable structures with independent 4-amalgamation.

Presumably, the same techniques also works for showing that $F(\emptyset) \neq \mathcal{O}(\emptyset)$.

Further Questions

- Is every ω -categorical *MS*-measurable structure one-based?
- Is every one-based supersimple ω-categorical structure MS-measurable?
- Is any ω -categorical supersimple not one-based Hrushovski construction such that $F(\emptyset) = O(\emptyset)$ (perhaps even *MS*-measurable)?
- Can we classify the invariant measures on an ω-categorical Hrushovski construction?
 Hunch/conjecture: there are very few of them (e.g. only those coming from invariant types).

Bibliography I

- [1] M. H. ALBERT, Measures on the Random Graph. In Journal of the London Mathematical Society. 50.3. 1994, pp. 417-429.
- [2] S. BRAUNFELD & P. MARIMON, Invariant Keisler measures in *w*-categorical NIP structures. Ongoing work
- [3] A. CHERNIKOV, E. HRUSHOVSKI, A. KRUCKMAN, K. KRUPINSKI, S. MOCONJA, A. PILLAY, & N. RAMSEY, Invariant measures in simple and in small theories. arXiv:2105.07281 [math.LO]. 2021.
- [4] A. CHEVALIER & E. HRUSHOVSKI, Piecewise Interpretable Hilbert Spaces. arXiv:2110.05142 [math.LO]. 2022.
- [5] E. HRUSHOVSKI, Simplicity and the Lascar group. Unpublished notes. 1998.
- [6] E. HRUSHOVSKI, Approximate Equivalence Relations. Unpublished. 2015.
- [7] R. ELWES, Dimension and measure in first order structures. PhD thesis, University of Leeds, 2005.
- [8] R. ELWES & H. D. MACPHERSON, A survey of Asymptotic Classes and Measurable Structures. Model theory and applications to algebra and analysis Vol. 2, London Math. Soc. Lecture Notes No. 350, Cambridge University Press, 2008 pp. 125–159.
- [9] D. M. EVANS, Higher Amalgamation Properties in Measured Structures. Arxiv. arXiv:2202.10183 [math.LO]. 2022.
- [10] D. M. EVANS & F. O. WAGNER Supersimple ω-Categorical Groups and Theories. Journal of Symbolic Logic 65 (2):767-776 (2000)
- [11] C. JAHEL & T. TSANKOV, Invariant measures on products and on the space of linear orders. J. Éc. polytech. Math. 9. 2022, pp.155–176.
- [12] D. MACPHERSON & C. STEINHORN, One-dimensional Asymptotic Classes of Finite Structures. Transactions of the American Mathematical Society. Volume 360, Number 1. 2008. pp.411–448
- [13] R. PHELPS, Lectures on Choquet's Theorem Berlin, Heidelberg : Springer Berlin Heidelberg : Springer; 2001; 2nd ed. 2001.
- [14] P. SIMON, A Guide to NIP Theories. Cambridge : Cambridge University Press. 2015.
- [15] T. TSANKOV, Unitary representations of oligomorphic groups. Geom. Funct. Anal. 22. 2012, no. 2, pp. 528–555.

MS-measurable structures

MS-measurable structures

Definition 13 (Macpherson & Steinhorn, 2008)

An infinite \mathcal{L} -structure is **MS-measurable** if there is a **dimension measure function** $h = (\dim, \mu) : \operatorname{Def}(M) \to \mathbb{N} \times \mathbb{R}^{>0}$ such that:

Finiteness $h(\phi(\overline{x}, \overline{a}))$ has finitely many values as $\overline{a} \in M^m$ varies;

Definability The set of $\bar{a} \in M^m$ such that $h(\phi(\bar{x}, \bar{a}))$ has a given value is \emptyset -definable;

Algebraicity For $|\phi(M^n, \overline{a})|$ finite, $h(\phi(\overline{x}, \overline{a})) = (0, |\phi(M^n, \overline{a})|);$

Additivity For $X, Y \subset M^n$ definable and disjoint

$$\mu(X \cup Y) = \begin{cases} \mu(X) + \mu(Y), & \text{for } \dim(X) = \dim(Y); \\ \mu(X), & \text{for } \dim(Y) < \dim(X). \end{cases}$$

Fubini for Projections Let $X \subseteq M^n$ be definable, $\pi : M^n \to M$ be the projection on the i^{th} coordinate. Suppose for each $a \in \pi(X)$ $h(\pi^{-1}(a) \cap X) = (d, v)$. Then, $\dim(X) = \dim(\pi(X)) + d$ and $\mu(X) = \mu(\pi(X)) \times v$.

Basic facts about MS-measurable structures

Macpherson & Steinhorn (2008):

Remark 14

- Being MS-measurable is a property of a theory;
- MS-measurable structures are supersimple of finite *SU*-rank;
- If \mathcal{M} is *MS*-measurable, then so is \mathcal{M}^{eq} .

Examples 15

- Pseudofinite fields (Chatzidakis, Van den Dries & Macintyre, 1997);
- Random Graph (Macpherson & Steinhorn, 2008);
- *ω*-categorical *ω*-stable structures, and more generally smoothly approximable structures (Elwes 2005);

MS-measurable structures

MS-measurable ω -categorical structures

Theorem 16 (M. (2022))

Suppose \mathcal{M} is ω -categorical and MS-measurable via a dimension-measure function $h = (d, \mu)$, then \mathcal{M} is MS-measurable via a dimension-measure function $h' = (SU, \mu')$, where the dimension part is given by SU-rank.

Corollary 17

Suppose that M is MS-measurable and ω -categorical. Then, $F(\emptyset) = O(\emptyset)$.

▶ Go back to main presentation

ω -categorical Hrushovski constructions

We work on graphs. For A finite, we define its predimension to be

$$\delta(A) = \alpha |A| - |E(A)|.$$

For some *f* slow-growing enough, we let

 $\mathcal{K}_f := \{ A \text{ finite graph } : \delta(A') \ge f(|A'|) \text{ for all } A' \subseteq A \}.$

We can build an ω -categorical structure \mathcal{M}_f as a generalisation of a Fraïssé limit, where the embeddings are given by:

 $A \leq B$ if $\delta(A) < \delta(B')$ for any finite B' such that $A \subsetneq B' \subseteq B$.

The **algebraic closure** of $A \subseteq M_f$ is the smallest $B \supseteq A$ such that $B \leq M_f$. And the **dimension** given by $d(A) = \delta(\operatorname{acl}(A))$ naturally induces *SU*-rank and the notion of independence corresponding to non-forking independence.

Basically, f bounds the size of the algebraic closures and we have a lot of control on which graphs to include/exclude, provided that we need \mathcal{K}_f to have the amalgamation property and to be closed under certain **independence theorem diagrams** to have simplicity.