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Background Clones

Clones

Definition 1 (Clone)

Let B be a (possibly infinite) set.
Let O(n) = BBn

be the set of functions f : Bn → B, and
O :=

⋃
n∈NO(n).

We call C ⊆ O a clone over B if
• C contains all projections;
• C is closed under composition.

For S ⊆ O, ⟨S⟩ is the smallest clone containing S.
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Background Clones

Closed clones

Interested in clones which are closed in the pointwise convergence
topology:1 For S ⊆ O,
f ∈ S ⇔ for all A ⊆ B finite there is g ∈ S such that g↾A = f↾A.

For B finite, topology trivialises (i.e. closed clone=clone).

⟨S⟩ denotes the smallest closed clone containing S.

There is a correspondence between:
• closed subclones of O;
• polymorphism clones of relational structures on B.
Definition of polymorphism clone

1If you do not like topology, do not worry! Our main results are also true (and
sometimes nicer) without the topology.
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Background Clones

Monoidal intervals

Let T be a transformation monoid on B (i.e. unary operations
containing Id, and closed under composition).

Closed clones whose unary operations are T form an interval in the
lattice of closed clones on B, known as the monoidal interval of T .

Studying the structure and size of monoidal intervals has a long
history in universal algebra (Szendrei 1986, Chapter 3):

• for O(1)
B (Burle 1967);

• for G ↷ B a permutation group (Pálfy and Szendrei 1982;
Kearnes and Szendrei 2001) (with focus on collapse);

• for other monoids (Krokhin 1995);
• over infinite sets (Pinsker 2008).
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Background Minimality

Minimal operations

What is the minimal amount of structure in a clone containing T ?

Definition 2 (Minimal clone)

Let D ⊋ C be closed subclones of O.
D is minimal above C if there is no closed clone E such that
C ⊊ E ⊊ D.

Definition 3 (almost minimal and minimal operations)

The k-ary operation f ∈ O \ C is almost minimal above C if for
each r < k,

⟨C ∪ {f}⟩ ∩ O(r) = C ∩ O(r).

If f is almost minimal above C and ⟨C ∪ {f}⟩ is minimal above C,
then f is minimal above C.
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Background Minimality

Basic facts on minimality and almost minimality

• D is minimal above C if and only if D = ⟨C ∪ {f}⟩ for f minimal
above C;

• minimal elements in the interval of T above ⟨T ⟩ correspond to
minimal clones above ⟨T ⟩ which are not essentially unary2;

• For B finite, if E ⊋ C, there is E ⊇ D ⊋ C minimal above C;
• this can fail over an infinite set, but holds in the settings that

interest us (see next slide);
• ALWAYS, if E ⊋ C, there is f ∈ E \ C almost minimal above C;

We will study minimal operations above ⟨G⟩ for G ↷ B a non-trivial
permutation group.

2f is essentially unary if it depends on only one variable.
Otherwise, it is essential.
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Background Minimality

Motivation: infinite domain CSPs
Motivation from infinite-domain CSPs More on CSPs :

• Aut(B) ↷ B is oligomorphic: it has finitely many orbits on Bn

for each n ∈ N (B countable).We say B is ω-categorical.
Examples of ω-categorical structures:

• (N,=);
• (Q, <);
• The Random graph;

• can reduce to core case where Aut(B) = End(B);
• if Pol(B) is essentially unary, CSP(B) is hard.

So can assume Pol(B) ⊋ ⟨Aut(B)⟩ and Pol(B)(1) = Aut(B);
• there is f ∈ Pol(B) minimal above ⟨Aut(B)⟩ (finite language);
• understanding these minimal operations is very helpful:

many arguments3 rely on finding low arity (binary) essential
polymorphism given the existence of an essential one;

3Bodirsky and Kára 2010; Bodirsky and Pinsker 2014; Mottet and Pinsker
2022.

Paolo Marimon, Michael Pinsker Minimal operations over permutation groups



Background Minimality

Motivation: infinite domain CSPs
Motivation from infinite-domain CSPs More on CSPs :

• Aut(B) ↷ B is oligomorphic: it has finitely many orbits on Bn

for each n ∈ N (B countable).We say B is ω-categorical.
Examples of ω-categorical structures:

• (N,=);
• (Q, <);
• The Random graph;

• can reduce to core case where Aut(B) = End(B);
• if Pol(B) is essentially unary, CSP(B) is hard.

So can assume Pol(B) ⊋ ⟨Aut(B)⟩ and Pol(B)(1) = Aut(B);
• there is f ∈ Pol(B) minimal above ⟨Aut(B)⟩ (finite language);
• understanding these minimal operations is very helpful:

many arguments3 rely on finding low arity (binary) essential
polymorphism given the existence of an essential one;

3Bodirsky and Kára 2010; Bodirsky and Pinsker 2014; Mottet and Pinsker
2022.

Paolo Marimon, Michael Pinsker Minimal operations over permutation groups



Background Minimality

Motivation: infinite domain CSPs
Motivation from infinite-domain CSPs More on CSPs :

• Aut(B) ↷ B is oligomorphic: it has finitely many orbits on Bn

for each n ∈ N (B countable).We say B is ω-categorical.
Examples of ω-categorical structures:

• (N,=);
• (Q, <);
• The Random graph;

• can reduce to core case where Aut(B) = End(B);
• if Pol(B) is essentially unary, CSP(B) is hard.

So can assume Pol(B) ⊋ ⟨Aut(B)⟩ and Pol(B)(1) = Aut(B);
• there is f ∈ Pol(B) minimal above ⟨Aut(B)⟩ (finite language);
• understanding these minimal operations is very helpful:

many arguments3 rely on finding low arity (binary) essential
polymorphism given the existence of an essential one;

3Bodirsky and Kára 2010; Bodirsky and Pinsker 2014; Mottet and Pinsker
2022.

Paolo Marimon, Michael Pinsker Minimal operations over permutation groups



Background Minimality

Motivation: infinite domain CSPs
Motivation from infinite-domain CSPs More on CSPs :

• Aut(B) ↷ B is oligomorphic: it has finitely many orbits on Bn

for each n ∈ N (B countable).We say B is ω-categorical.
Examples of ω-categorical structures:

• (N,=);
• (Q, <);
• The Random graph;

• can reduce to core case where Aut(B) = End(B);
• if Pol(B) is essentially unary, CSP(B) is hard.

So can assume Pol(B) ⊋ ⟨Aut(B)⟩ and Pol(B)(1) = Aut(B);
• there is f ∈ Pol(B) minimal above ⟨Aut(B)⟩ (finite language);
• understanding these minimal operations is very helpful:

many arguments3 rely on finding low arity (binary) essential
polymorphism given the existence of an essential one;

3Bodirsky and Kára 2010; Bodirsky and Pinsker 2014; Mottet and Pinsker
2022.

Paolo Marimon, Michael Pinsker Minimal operations over permutation groups



Background Minimality

Motivation: infinite domain CSPs
Motivation from infinite-domain CSPs More on CSPs :

• Aut(B) ↷ B is oligomorphic: it has finitely many orbits on Bn

for each n ∈ N (B countable).We say B is ω-categorical.
Examples of ω-categorical structures:

• (N,=);
• (Q, <);
• The Random graph;

• can reduce to core case where Aut(B) = End(B);
• if Pol(B) is essentially unary, CSP(B) is hard.

So can assume Pol(B) ⊋ ⟨Aut(B)⟩ and Pol(B)(1) = Aut(B);
• there is f ∈ Pol(B) minimal above ⟨Aut(B)⟩ (finite language);
• understanding these minimal operations is very helpful:

many arguments3 rely on finding low arity (binary) essential
polymorphism given the existence of an essential one;

3Bodirsky and Kára 2010; Bodirsky and Pinsker 2014; Mottet and Pinsker
2022.

Paolo Marimon, Michael Pinsker Minimal operations over permutation groups



Background Minimality

Motivation: infinite domain CSPs
Motivation from infinite-domain CSPs More on CSPs :

• Aut(B) ↷ B is oligomorphic: it has finitely many orbits on Bn

for each n ∈ N (B countable).We say B is ω-categorical.
Examples of ω-categorical structures:

• (N,=);
• (Q, <);
• The Random graph;

• can reduce to core case where Aut(B) = End(B);
• if Pol(B) is essentially unary, CSP(B) is hard.

So can assume Pol(B) ⊋ ⟨Aut(B)⟩ and Pol(B)(1) = Aut(B);
• there is f ∈ Pol(B) minimal above ⟨Aut(B)⟩ (finite language);
• understanding these minimal operations is very helpful:

many arguments3 rely on finding low arity (binary) essential
polymorphism given the existence of an essential one;

3Bodirsky and Kára 2010; Bodirsky and Pinsker 2014; Mottet and Pinsker
2022.

Paolo Marimon, Michael Pinsker Minimal operations over permutation groups



Background Minimality

Motivation: infinite domain CSPs
Motivation from infinite-domain CSPs More on CSPs :

• Aut(B) ↷ B is oligomorphic: it has finitely many orbits on Bn

for each n ∈ N (B countable).We say B is ω-categorical.
Examples of ω-categorical structures:

• (N,=);
• (Q, <);
• The Random graph;

• can reduce to core case where Aut(B) = End(B);
• if Pol(B) is essentially unary, CSP(B) is hard.

So can assume Pol(B) ⊋ ⟨Aut(B)⟩ and Pol(B)(1) = Aut(B);
• there is f ∈ Pol(B) minimal above ⟨Aut(B)⟩ (finite language);
• understanding these minimal operations is very helpful:

many arguments3 rely on finding low arity (binary) essential
polymorphism given the existence of an essential one;

3Bodirsky and Kára 2010; Bodirsky and Pinsker 2014; Mottet and Pinsker
2022.

Paolo Marimon, Michael Pinsker Minimal operations over permutation groups



Background Minimality

Motivation: infinite domain CSPs
Motivation from infinite-domain CSPs More on CSPs :

• Aut(B) ↷ B is oligomorphic: it has finitely many orbits on Bn

for each n ∈ N (B countable).We say B is ω-categorical.
Examples of ω-categorical structures:

• (N,=);
• (Q, <);
• The Random graph;

• can reduce to core case where Aut(B) = End(B);
• if Pol(B) is essentially unary, CSP(B) is hard.

So can assume Pol(B) ⊋ ⟨Aut(B)⟩ and Pol(B)(1) = Aut(B);
• there is f ∈ Pol(B) minimal above ⟨Aut(B)⟩ (finite language);
• understanding these minimal operations is very helpful:

many arguments3 rely on finding low arity (binary) essential
polymorphism given the existence of an essential one;

3Bodirsky and Kára 2010; Bodirsky and Pinsker 2014; Mottet and Pinsker
2022.

Paolo Marimon, Michael Pinsker Minimal operations over permutation groups



Background Minimality

Some terminology for operations
We define some operations in virtue of the identities they satisfy:
• ternary quasi-majority:

m(x, x, y) ≈ m(x, y, x) ≈ m(y, x, x) ≈ m(x, x, x);

• quasi-Malcev:

M(y, y, x) ≈ M(x, y, y) ≈ M(x, x, x);

• For f idempotent, i.e. f(x, . . . , x) ≈ x, remove the ’quasi’;
• ternary minority:

m(y, y, x) ≈ m(y, x, y) ≈ m(x, y, y) ≈ m(x, x, x) ≈ x;

• quasi-semiprojection: k-ary f such that there is an
i ∈ {1, . . . , k} and a unary operation g such that
whenever (a1, . . . , ak) is a non-injective tuple from B,

f(a1, . . . , ak) = g(ai).
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f(a1, . . . , ak) = g(ai).
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Background Minimality

Some terminology for operations
We define some operations in virtue of the identities they satisfy:
• ternary quasi-majority:

m(x, x, y) ≈ m(x, y, x) ≈ m(y, x, x) ≈ m(x, x, x);

• quasi-Malcev:

M(y, y, x) ≈ M(x, y, y) ≈ M(x, x, x);

• For f idempotent, i.e. f(x, . . . , x) ≈ x, remove the ’quasi’;
• ternary minority:

m(y, y, x) ≈ m(y, x, y) ≈ m(x, y, y) ≈ m(x, x, x) ≈ x;

• quasi-semiprojection: k-ary f such that there is an
i ∈ {1, . . . , k} and a unary operation g such that
whenever (a1, . . . , ak) is a non-injective tuple from B,

f(a1, . . . , ak) =

g(

ai

)

.
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Background Previous results

Rosenberg’s five types theorem

Theorem 4 (Five types theorem, Rosenberg 1986)

Let B be finite and f be minimal above ⟨Id⟩. Then, f is one of:
1 a unary operation;
2 a binary operation;
3 a ternary majority operation;
4 a minority of the form x+ y + z in some Boolean group (B,+);
5 a k-ary semiprojection for some k ≥ 3.

A group is Boolean if every element has order 2.
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Background Previous results

The oligomorphic case

Bodirsky and Chen 2007 classify minimal operations above
oligomorphic4 permutation groups.

Theorem 5 (Oligomorphic case, Bodirsky and Chen 2007)

Let G ↷ B be an oligomorphic permutation group.
Let f be minimal above ⟨G⟩. Then, f is of one of:

1 a unary operation;
2 a binary operation;
3 a ternary quasi-majority operation;
4 a k-ary quasi-semiprojection for some 3 ≤ k ≤ 2r − s, where r is

the number of G-orbitals and s is the number of G-orbits.

Note: No minority type!
We obtain better results even in this case!

4G ↷ B is oligomorphic if it has finitely many orbits on Bn for each n ∈ N.
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Minimal operations above permutation groups Main Theorem

The Main Theorem

Theorem 6 (Marimon and Pinsker 2024)

Let G ↷ B be non-trivial with s many orbits (s possibly infinite). Let
f be a minimal operation above ⟨G⟩. Then, f is one of:

1 a unary operation;
2 a binary operation;

3 a ternary quasi-minority operation of the form αm for α ∈ G,
where

• G is a Boolean group acting freely on B;
• the operation m is a G-invariant Boolean Steiner 3-quasigroup.

4 f is a k-ary orbit-semiprojection for 3 ≤ k ≤ s.

• type 3 strengthens quasi-minority. Essentially never occurs;
• type 4 strengthens quasi-semiprojection. Arity bounded by orbits;
• No quasi-majorities!
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Minimal operations above permutation groups Main Theorem

The Main Theorem

Theorem 6 (Marimon and Pinsker 2024)

Let G ↷ B be non-trivial with s many orbits (s possibly infinite). Let
f be a minimal operation above ⟨G⟩. Then, f is one of:

1 a unary operation;
2 a binary operation;

3 a ternary quasi-minority operation of the form αm for α ∈ G,
where

• G is a Boolean group acting freely on B;
• the operation m is a G-invariant Boolean Steiner 3-quasigroup.

4 f is a k-ary orbit-semiprojection for 3 ≤ k ≤ s.

In the oligomorphic case we improve on Bodirsky and Chen 2007:
• We reduced from four to three types (G ↷ B is not free);
• Stronger characterisation of the quasi-semiprojection case.
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Minimal operations above permutation groups Main Theorem

The Main Theorem

Theorem 6 (Marimon and Pinsker 2024)

Let G ↷ B be non-trivial with s many orbits (s possibly infinite). Let
f be a minimal operation above ⟨G⟩. Then, f is one of:

1 a unary operation;
2 a binary operation;

3 a ternary quasi-minority operation of the form αm for α ∈ G,
where

• G is a Boolean group acting freely on B;
• the operation m is a G-invariant Boolean Steiner 3-quasigroup.

4 f is a k-ary orbit-semiprojection for 3 ≤ k ≤ s.

It is nice to have a non-trivial theorem true for every non-trivial group
and false for the trivial group.
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Minimal operations above permutation groups The minimal operations

G-invariant Boolean Steiner 3-quasigroups

Definition 7
A G-invariant Boolean Steiner 3-quasigroup5 is a symmetric
ternary minority operation m satisfying:

m(x, y,m(x, y, z)) ≈ z ; (SQS)
m(x, y,m(z, y, w)) ≈ m(x, z, w) ; (Bool)

for all α, β, γ ∈ G,m(αx, βy, γz) ≈ αβγm(x, y, z). (Inv)

5Studied in universal algebra (Quackenbush 1975; Ganter and Werner 1975)
and design theory (Lindner and Rosa 1978).
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Minimal operations above permutation groups The minimal operations

G-invariant Boolean Steiner 3-quasigroups

Definition 7
A G-invariant Boolean Steiner 3-quasigroup5 is a symmetric
ternary minority operation m satisfying:

m(x, y,m(x, y, z)) ≈ z ; (SQS)
m(x, y,m(z, y, w)) ≈ m(x, z, w) ; (Bool)

for all α, β, γ ∈ G,m(αx, βy, γz) ≈ αβγm(x, y, z). (Inv)

(SQS) yields that m(x1, x2, x3) = x4 ∧
∧

i<j≤4 xi ̸= xj is a
Steiner quadruple system on B: a 4-hypergraph on B such that
every three vertices are in a unique 4-hyperedge.

Steiner 3-quasigroups correspond to Steiner quadruple systems on B.
5Studied in universal algebra (Quackenbush 1975; Ganter and Werner 1975)

and design theory (Lindner and Rosa 1978).
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Minimal operations above permutation groups The minimal operations

G-invariant Boolean Steiner 3-quasigroups

Definition 7
A G-invariant Boolean Steiner 3-quasigroup5 is a symmetric
ternary minority operation m satisfying:

m(x, y,m(x, y, z)) ≈ z ; (SQS)
m(x, y,m(z, y, w)) ≈ m(x, z, w) ; (Bool)

for all α, β, γ ∈ G,m(αx, βy, γz) ≈ αβγm(x, y, z). (Inv)

Correspond to x+ y + z on a Boolean group on B.

5Studied in universal algebra (Quackenbush 1975; Ganter and Werner 1975)
and design theory (Lindner and Rosa 1978).
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Minimal operations above permutation groups The minimal operations

G-invariant Boolean Steiner 3-quasigroups

Definition 7
A G-invariant Boolean Steiner 3-quasigroup is a symmetric
ternary minority operation m satisfying:

m(x, y,m(x, y, z)) ≈ z ; (SQS)
m(x, y,m(z, y, w)) ≈ m(x, z, w) ; (Bool)

for all α, β, γ ∈ G,m(αx, βy, γz) ≈ αβγm(x, y, z). (Inv)

m(x, y, z) also induces a Boolean Steiner 3-quasigroup on the
G-orbits.
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Minimal operations above permutation groups The minimal operations

G-invariant Boolean Steiner 3-quasigroups

Definition 7
A G-invariant Boolean Steiner 3-quasigroup is a symmetric
ternary minority operation m satisfying:

m(x, y,m(x, y, z)) ≈ z ; (SQS)
m(x, y,m(z, y, w)) ≈ m(x, z, w) ; (Bool)

for all α, β, γ ∈ G,m(αx, βy, γz) ≈ αβγm(x, y, z). (Inv)

m(x, y, z) also induces a Boolean Steiner 3-quasigroup on the
G-orbits.

Lemma 8 (Marimon and Pinsker 2024)

For G ↷ B, there are G-invariant Boolean Steiner 3-quasigroup if
and only if G ↷ B is a Boolean group acting freely on B with either
2n or infinitely many orbits.
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Minimal operations above permutation groups The minimal operations

Orbit-semiprojections
f is an orbit-semiprojection if there is an i ∈ {1, . . . , k} and g ∈ G
such that whenever at least two of the aj lie in the same orbit,

f(a1, . . . , ak) = g(ai).

Following a similar idea to Pálfy 1986 on semiprojections,

Lemma 9 (Marimon and Pinsker 2024)

Let G ↷ B with s-many orbits and B finite. Then, for all 2 ≤ k ≤ s
there is a k-ary orbit-semiprojection minimal above ⟨G⟩.

• also holds for Aut(B) ↷ B oligomorphic with B in a finite
language;

• always holds for minimality in the lattice of all clones (rather
than closed clones);

• almost minimal k-ary orbit-semiprojections exist for all 2 ≤ k ≤ s.
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Minimal operations above permutation groups The minimal operations

Orbit-semiprojections

f is an orbit-semiprojection if there is an i ∈ {1, . . . , k} and g ∈ G
such that whenever at least two of the aj lie in the same orbit,

f(a1, . . . , ak) = g(ai).

Following a similar idea to Pálfy 1986,

Lemma 10 (Marimon and Pinsker 2024)

Let G ↷ B with s-many orbits and B finite. Then, for all 2 ≤ k ≤ s
there is a k-ary orbit-semiprojection minimal above ⟨G⟩.

Problem: Find G ↷ B with three orbits such that there is no ternary
orbit-semiprojection minimal above ⟨G⟩.
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Minimal operations above permutation groups Almost minimal operations

Methods: almost minimality

To classify minimal operations, we first classify almost minimal
operations above ⟨G⟩;

This splits into three cases:
• G ↷ B not a Boolean group acting freely on B;
• G ↷ B a Boolean group acting freely on B with |G| > 2;
• Z2 ↷ B acting freely.
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Minimal operations above permutation groups Almost minimal operations

Case1: The Three types theorem

Theorem 11 (Three types theorem, Marimon and Pinsker 2024)

Let G ↷ B with s-many orbits be such that G is not a Boolean
group acting freely on B. Let f be almost minimal above ⟨G⟩. Then,
f is one of:

1 a unary operation;
2 a binary operation;
3 a k-ary orbit-semiprojection for 3 ≤ k ≤ s.
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Minimal operations above permutation groups Almost minimal operations

Case 2: the Boolean case

Theorem 12 (Boolean case, Marimon and Pinsker 2024)

Let G ↷ B be a Boolean group acting freely on B with s-many orbits
and |G| > 2. Let f be an almost minimal operation above ⟨G⟩. Then,
f is one of:

1 a unary operation;
2 a binary operation;
3 a G-quasi-minority;
4 a k-ary orbit-semiprojection for 3 ≤ k ≤ s.

A G-quasi-minority is a ternary operation such that for all β ∈ G,

m(y, x, βx) ≈ m(x, βx, y) ≈ m(x, y, βx) ≈ m(βy, βy, βy).
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Minimal operations above permutation groups Almost minimal operations

Case 3: the Z2 case

Theorem 13 (Z2 case, Marimon and Pinsker 2024)

Let Z2 act freely on B with s-many orbits. Let f be an almost minimal
operation above ⟨Z2⟩. Then, f is one of

1 a unary operation;

2 a G-quasi-minority;

3 an odd majority;

4 an odd Malcev, up to permuting variables;

5 a k-ary orbit-semiprojection for 2 ≤ k ≤ s.

An odd majority m is a quasi-majority such that for γ ̸= Id in Z2,

m(y, x, γx) ≈ m(x, γx, y) ≈ m(x, y, γx) ≈ m(y, y, y).

An odd Malcev is a quasi-Malcev such that M(x, γy, z) is an odd majority.
Odd majorities and odd Malcev cannot be minimal!
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A question of Bodirsky

A question of Bodirsky
As mentioned earlier, finding low arity essential polymorphisms is
often helpful for arguments in infinite-domain CSPs.

Question 1 (Question 24 in Bodirsky 2021)

Suppose B is ω-categorical, Aut(B) = End(B), and Pol(B) has an
essential polymorphism. Does Pol(B) have a binary essential
polymorphism?

Answer: No. (Though true if Aut(B) has ≤ 2 orbits.)
For any oligomorphic Aut(B) ↷ B with s orbits for s ≥ 3, there is an
ω-categorical structure B′ such that

Pol(B′) := ⟨Aut(B) ∪ {f}⟩,

where f is an s-ary orbit-semiprojection. This has an essential s-ary
polymorphism but no essential polymorphism of lower arity.
However. . . there is a kernel of truth in the question. . .

Paolo Marimon, Michael Pinsker Minimal operations over permutation groups



A question of Bodirsky

A question of Bodirsky
As mentioned earlier, finding low arity essential polymorphisms is
often helpful for arguments in infinite-domain CSPs.

Question 1 (Question 24 in Bodirsky 2021)

Suppose B is ω-categorical, Aut(B) = End(B), and Pol(B) has an
essential polymorphism. Does Pol(B) have a binary essential
polymorphism?

Answer: No. (Though true if Aut(B) has ≤ 2 orbits.)
For any oligomorphic Aut(B) ↷ B with s orbits for s ≥ 3, there is an
ω-categorical structure B′ such that

Pol(B′) := ⟨Aut(B) ∪ {f}⟩,

where f is an s-ary orbit-semiprojection. This has an essential s-ary
polymorphism but no essential polymorphism of lower arity.
However. . . there is a kernel of truth in the question. . .

Paolo Marimon, Michael Pinsker Minimal operations over permutation groups



A question of Bodirsky

A question of Bodirsky
As mentioned earlier, finding low arity essential polymorphisms is
often helpful for arguments in infinite-domain CSPs.

Question 1 (Question 24 in Bodirsky 2021)

Suppose B is ω-categorical, Aut(B) = End(B), and Pol(B) has an
essential polymorphism. Does Pol(B) have a binary essential
polymorphism?

Answer: No.

(Though true if Aut(B) has ≤ 2 orbits.)
For any oligomorphic Aut(B) ↷ B with s orbits for s ≥ 3, there is an
ω-categorical structure B′ such that

Pol(B′) := ⟨Aut(B) ∪ {f}⟩,

where f is an s-ary orbit-semiprojection. This has an essential s-ary
polymorphism but no essential polymorphism of lower arity.
However. . . there is a kernel of truth in the question. . .

Paolo Marimon, Michael Pinsker Minimal operations over permutation groups



A question of Bodirsky

A question of Bodirsky
As mentioned earlier, finding low arity essential polymorphisms is
often helpful for arguments in infinite-domain CSPs.

Question 1 (Question 24 in Bodirsky 2021)

Suppose B is ω-categorical, Aut(B) = End(B), and Pol(B) has an
essential polymorphism. Does Pol(B) have a binary essential
polymorphism?

Answer: No. (Though true if Aut(B) has ≤ 2 orbits.)

For any oligomorphic Aut(B) ↷ B with s orbits for s ≥ 3, there is an
ω-categorical structure B′ such that

Pol(B′) := ⟨Aut(B) ∪ {f}⟩,

where f is an s-ary orbit-semiprojection. This has an essential s-ary
polymorphism but no essential polymorphism of lower arity.
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A question of Bodirsky

Why easy problems lie above binary operations

Theorem 14 (Marimon and Pinsker 2024)

Suppose B is finite or ω-categorical, Aut(B) = End(B), and
Aut(B) ↷ B is not the free action of a Boolean group on B (always
the case if B is ω-categorical). Suppose
(⋆) Pol(B) does not have a uniformly continuous homomorphism to

the clone of projections P{0,1}.
Then, Pol(B) contains a binary essential polymorphism.
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Suppose B is finite or ω-categorical, Aut(B) = End(B), and
Aut(B) ↷ B is not the free action of a Boolean group on B (always
the case if B is ω-categorical). Suppose
(⋆) Pol(B) does not have a uniformly continuous5 homomorphism to

the clone of projections P{0,1}.
Then, Pol(B) contains a binary essential polymorphism.

5ξ : C → D is uniformly continuous if there is some finite B′ ⊆ B such that
f↾B′ = g↾B′ implies ξ(f) = ξ(g).
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the case if B is ω-categorical). Suppose
(⋆) Pol(B) does not have a uniformly continuous5 homomorphism to

the clone of projections P{0,1}.
Then, Pol(B) contains a binary essential polymorphism.

• A uniformly continuous homomorphism to P{0,1} implies
CSP(B) is NP-hard;

• So, for the purposes of infinite-domain CSPs, we may assume
that Pol(B) has a binary essential polymorphism.

5ξ : C → D is uniformly continuous if there is some finite B′ ⊆ B such that
f↾B′ = g↾B′ implies ξ(f) = ξ(g).
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A question of Bodirsky

Why easy problems lie above binary operations

Theorem 14 (Marimon and Pinsker 2024)

Suppose B is finite or ω-categorical, Aut(B) = End(B), and
Aut(B) ↷ B is not the free action of a Boolean group on B (always
the case if B is ω-categorical). Suppose
(⋆) Pol(B) does not have a uniformly continuous homomorphism to

the clone of projections P{0,1}.
Then, Pol(B) contains a binary essential polymorphism.

Proof idea.
Suppose by contrapositive that Pol(B) ∩ O(2) = ⟨Aut(B)⟩ ∩ O(2).
Then, all ternary operations in C are almost minimal.
So Pol(B) ∩ O(3) consists entirely of essentially unary operations and
orbit-semiprojections.
These will only satisfy trivial identities, which is sufficient to build a
uniformly continuous homomorphism to P{0,1}.
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A question of Bodirsky

Why easy problems lie above binary operations

Theorem 14 (Marimon and Pinsker 2024)

Suppose B is finite or ω-categorical, Aut(B) = End(B), and
Aut(B) ↷ B is not the free action of a Boolean group on B (always
the case if B is ω-categorical). Suppose
(⋆) Pol(B) does not have a uniformly continuous homomorphism to

the clone of projections P{0,1}.
Then, Pol(B) contains a binary essential polymorphism.

Indeed, we also have

Lemma 15 (Marimon and Pinsker 2024)

Let G ↷ B.
Consider OS := ⟨G ∪ {f |f is an orbit-semiprojection for G ↷ B}⟩.
There is a uniformly continuous homomorphism ξ : OS → P{0,1}.
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A question of Bodirsky

Thank you!
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Extras

Polymorphisms

Let B be a relational structure.

Definition 16 (Polymorphisms)

f : Bn → B is a polymorphism if it preserves all relations of B:a11
...
a1k

 , . . . ,

an1
...
ank

 ∈ RB ⇒

f(a11, . . . , a
n
1 )

...
f(a1k, . . . , a

n
k)

 ∈ RB.

We call Pol(B) the set of polymorphisms of B.
The polymorphism clone of B.

• Unary polymorphism = homomorphism;
• Projections to one coordinate are always polymorphisms.
Back to main presentation
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Extras

Constraint Satisfaction Problems

τ = finite relational language.

Definition 17 (CSP(B))

Let B be a fixed structure.
CSP(B) is the following computational problem:

• INPUT: A finite τ -structure A;
• OUTPUT: Is there a homomorphism A → B?

• B is finite ⇒ CSP(B) is in NP;
• The computational complexity of CSP(B) in a finite or

ω-categorical setting is determined by identities satisfied by
Pol(B).
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Extras

Examples of CSPs

Example 18 (n-colorability for graphs)
Let Kn be the complete graph on n verteces. Then,
• CSP(Kn) = n-colorability problem for graphs;
• NP-complete for n > 2 and in P for n = 2 (Karp 1972).

Example 19 (digraph acyclicity)
Consider (Q, <). Then,
• CSP(Q, <) = digraph acyclicity, i.e.

INPUT: a finite directed graph D;
OUTPUT Does D contain a finite directed cycle?

• In P (Kahn 1962).

Back to main presentation
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