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Exchangeable graphs

Exchangeable graphs

Graph(N) := space of graphs with vertex set N.

Consider Graph(N) with the pointwise convergence topology:
basis of clopen sets: for each finite graph G = (V,E) with V ⊆ N,

NG := {N ∈ Graph(N)| N ↾V = G} .

Definition 1 (Exchangeable graph)

An exchangeable graph is a Borel probability measure µ on
Graph(N) whose distribution is invariant under all permutations,
i.e. S∞ ↷ N.
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Exchangeable graphs

Fun facts about exchangeable graphs

Standard construction of the random graph is an exchangeable graph.

Studied in:
• Probability:

• Aldous 1981 and Hoover 1979 representation theorem for
exchangeable graphs and hypergraphs, generalising De Finetti
1929 (characterising exchangeable colourings);

• Combinatorics:
• (ergodic) exchangeable graphs correspond to graphons, the main

object of the theory of graph limits (Diaconis and Janson 2008).
• Statistical networks:

• Exchangeability is a natural assumption when modelling a
network on a large population for which we have no information.
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Exchangeable graphs

The Aldous-Hoover theorem

Theorem 2 (Aldous 1981 and Hoover 1979)

Let µ be an exchangeable graph.
Then, there is a Borel function1 f : [0, 1]4 → {0, 1} and
Uniform[0, 1] independent identically distributed random variables

U∅, (Ua|a ∈ N), (U{a,b}|{a, b} ∈ [N]2)

such that the random graph built by setting

E(a, b) if and only if f(U∅, Ua, Ub, U{a,b}) = 1 (♢)

has the same distribution as µ.

EASY TO SEE: (♢) gives an exchangeable graph.
HARD TO PROVE: any exchangeable graph is of the form (♢).

1symmetric in the second and third argument.
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Invariant Random Expansions

What about other symmetries and other structures?

Question 1 (Aldous 1985; Kallenberg 2008; Crane and Towsner 2018)

Can we describe random graphs/hypergraphs/structures whose
distribution is invariant under different symmetries?

For us: different symmetries = other permutation groups G ↷ N;

Describing can take two forms:
• A "representation theorem" like that of Aldous-Hoover;
• Showing that G-invariance implies G′-invariance for some larger

group of permutations.
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Invariant Random Expansions

Invariant Random Expansions

L,L′: disjoint (finite) relational languages.

C′: hereditary class of (labelled) finite L-structures.
e.g. graphs, hypergraphs, trees, linear orderings;

Struc(C′): class of L′-structures with domain N and age, i.e. class of
finite substructures, ⊆ C′.

M: an L-structure with domain N.

Definition 3 (IRE)

An invariant random expansion of M by C′, IRE(M, C′), is an
Aut(M)-invariant Borel probability measure on Struc(C′).

Exchangeable structures are IREs of (N,=).
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Invariant Random Expansions

Homogeneous structures
We focus on M homogeneous: isomorphisms between finite
substructures extend to an automorphisms of M.

When a class of finite structures C forms a Fraïssé class we can build
a countable homogeneous structure M whose age is C. We call M
the Fraïssé limit of C.

Examples 4

Homogeneous structure Fraïssé class

Random graph graphs

(Q,<) linear orders
Generic tetrahedron-free

3-hypergraph
tetrahedron-free
3-hypergraphs
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Invariant Random Expansions

Why homogeneous structures? I

• Many combinatorially interesting classes of structures are Fraïssé.
So IREs of homogeneous structures frequently arise naturally:

• IREs of (Q, <): contractable sequences (Ryll-Nardzewski 1957)
and arrays (Kallenberg 1997);

• IREs of homogeneous unary structures: stochastic block model
(Holland, Laskey, and Leinhardt 1983);

• IREs of structures with equivalence relations have applications to
spin glass models (Austin and Panchenko 2014).

• Describing IREs of arbitrary structures is essentially intractable.
However, when Aut(M) is "very large" this becomes possible
(e.g. M is homogeneous or ω-categorical);
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Invariant Random Expansions

Why homogeneous structures? II

For V ⊆ N, write C′[V ] for the structures in C′ with domain V .
• For M homogeneous, µ ∈ IRE(M, C′), and V ⊆ N finite,

the induced distribution of µ on C′[V ] is determined by the
isomorphism type of M ↾V ;

• We also study consistent random expansions of an hereditary
class C by another C′, CRE(C, C′) Want to see the definition? .
When C is Fraïssé with limit M, these correspond to
IRE(M, C′).

Past progress in describing IREs takes one of two strategies:
(A) Choose M so that we can understand IRE(M, C′) for many C′;
(B) Choose C′ so that we can understand IRE(M, C′) for many M.
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Invariant Random Expansions

Limitations of the strategies
Strategy (A) only works for M very well-behaved:
• M very non-random looking: a unique substructure (up to

isomorphism) in each size:
• (Q, <) (Kallenberg 1997);
• (N,=) (Aldous 1981; Hoover 1979).

• M very random looking: "no interesting omitted
configuration":

• structures with disjoint n-amalgamation, e.g. random graph,
random hypergraphs (Crane and Towsner 2018; Ackerman 2021).

Strategy (B) only works for C′ with very slow growth-rate:
• C′ is unary (De Finetti 1929; Jahel and Tsankov 2022);
• C′ = {linear orders} (Angel, Kechris, and Lyons 2014; Balister,

Bollobás, and Janson 2015; Jahel and Tsankov 2022)
What about IREs of the generic tetrahedron-free 3-hypergraph by
graphs?
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Invariant Random Expansions

Exchangeability of IREs I

The IREs of M by C′ always contain the exchangeable C′-structures.

Question 2

What are (interesting) sufficient conditions for all IREs of M by C′ to
be exchangeable?

Reducing to the exchangeable case allows us to use the powerful
theory of exchangeability.

This happens in many of the examples we mentioned:

In Strategy (A):
• For M with n-DAP for all n and k-transitive (i.e. all k-tuples are

in the same orbit), IREs of M by l-hypergraphs for l ≤ k are
exchangeable (Crane and Towsner 2018; Ackerman 2021).
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Invariant Random Expansions

Exchangeability of IREs II

In Strategy (B):

Theorem 5 (Jahel and Tsankov 2022)

Let M be transitive, ω-categorical, with trivial algebraicity and weak
elimination of imaginaries:
• Unary IREs of M are exchangeable;
• If M has no ∅-definable linear ordering, then all IREs of M by

linear orders are exchangeable.

Note: there is a unique exchangeable linear ordering µ concentrating
on the isomorphism type of (Q, <). For all a1, . . . , an ∈ N,

µ(a1 < a2 < · · · < an) =
1

n!
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Main results

Main theorem
Adapting techniques from Angel, Kechris, and Lyons 2014:

Main Theorem 6 (Braunfeld, Jahel, and M. 2024)

Let M be a homogeneous structure with k-overlap closed age.
Let C′ have labelled growth rate O(en

k+δ
) for every δ > 0.

Then every invariant random expansion of M by C′ is exchangeable.

Want more details on the proof?

• k-overlap closed: (k + 1)-hypergraphs, Kk+1
n -free

(k + 1)-hypergraphs, and many more . . .
• O(en

k+δ
): C′ has finitely many relations of arity ≤ k.

Proof also works for:
• consistent random expansions of C by C′;
• reducts of M.
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Main results

k-overlap closed classes
Definition 7 (k-overlap closedness)

L of arity > k. C is k-overlap closed if for every r > k and arbitrarily
large n, there exists an r-uniform hypergraph K on n vertices s.t.

1 K has at least C(r)nk+α(r) many hyperedges for some α(r) > 0;
2 No two K-hyperedges intersect in more than k points;
3 For every H1, H2 ∈ C[r], pasting them into the K-hyperedges

yields G ∈ C[n] (possibly after adding extra relations).

K

H1

H2

2 C[r] G 2 C[n]
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Main results

Thoughts on k-overlap closedness I

Definition 8 (k-irreducible)

A is k-irreducible if every k-many vertices from A are in some relation.

By probabilistic methods we prove k-overlap closedness for
C = Forb(F) with all relations of arity > k, where A ∈ F are:

1 (k + 1)-irreducible; OR
2 of bounded size and k-irreducible (for k ≥ 2).

For k = 1 in 1 , C with free amalgamation and arity > 1 is 1-overlap
closed, recovering Angel, Kechris, and Lyons 2014.
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Main results

Thoughts on k-overlap closedness II

When the age of M is not k-overlap closed, it is easy to find
non-exchangeable IREs by C′ with growth rate O(en

k+δ
):

• linear orders are not 1-overlap closed;

• ages of NIP finitely homogeneous structures are not 1-overlap
closed: by Macpherson 1987 they have growth rate O(en

1+δ
) and

so homogeneous NIP M has a non-exchangeble IRE by itelf;

• two-graphs are not 2-overlap closed. These are 3-hypergraphs
where every four vertices have an even number of hyperedges.
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Main results

Moral of the story

If M is k-transitive and "looks random enough" (i.e. has k-overlap
closed age), IREs of M by "essentially k-ary" C′ classes are
exchangeable.

Our notion of "random enough" allows for many homogeneous
structures with interesting forbidden configurations.
Our notion of "essentially k-ary" is a growth-rate condition on C′.

If M has some "hidden k-ary structure", then we can find
non-exchangeable IREs by C′ of growth rate O(en

k+δ
).
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Applications to Invariant Keisler measures

Invariant Keisler measures

Definition 9 (Invariant Keisler measure)

An invariant Keisler measure (IKM) of M in the variable x is an
Aut(M)-invariant regular Borel probability measure µ on Sx(M).

We are mainly interested in M:
• countable and homogeneous; OR
• ω-saturated and strongly ω-homogeneous (e.g. a monster

model).
IKMs give a notion of size on the definable subsets of M .

Paolo Marimon, Samuel Braunfeld, Colin Jahel When invariance implies exchangeability



Applications to Invariant Keisler measures

IKMs in model theory

• Well-behaved in NIP theories (Hrushovski and Pillay 2011;
Ensley 1996);

• They naturally arise in many simple theories:
• pseudofinite fields (Chatzidakis, Van Den Dries, and Macintyre

1992);
• infinite dimensional vector spaces with forms over finite fields

(Cherlin and Hrushovski 2003).

But they are poorly understood in arbitrary simple theories.
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Applications to Invariant Keisler measures

IKMs and IREs

IKMs are a special case of IREs.2

Example 10 (IKMs of the random graph R)
We can represent any p ∈ Sx(R) as a colouring of R:

B(a) if and only if E(x, a) ∈ p.

So, we can view IKMs of R in the singleton variable as unary IREs.
Hence, they are all exchangeable.

More generally, we can choose a canonical language Lpr such that
IKMs of M in a fixed variable x correspond to IREs of M to a given
space of Lpr-structures.

2Adequately defining IREs over arbitrary domains and allowing for the
expansion to depend on the underlying structure.
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Applications to Invariant Keisler measures

Understanding IKMs of homogeneous structures

• IKMs of homogeneous graphs (and other binary structures) are
well-understood since Albert 1994.

• This is because their IKMs correspond to unary IREs, which are
easily understood via De Finetti-like methods, and stability theory
(cf. Hrushovski 2012).

• IKMs of homogeneous (k+1)-hypergraphs for k > 1 are harder!
• this is because graph and hypergraph IREs are harder to

understand;
• but we develop tools precisely for this;
• e.g. for M homogeneous k-transitive and (k + 1)-overlap closed,

all IKMs to the variable x are exchangeable.

This has various consequences for understanding IKMs.
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Applications to Invariant Keisler measures

Forking and universally measure zero

Recent work on IKMs has focused on comparing two natural model
theoretic notions of "smallness" for a definable set:
• ϕ(x, a) is universally measure zero if it is assigned measure 0

by every (global) IKM. Write O(∅) for the set of universally
measure zero formulas;

• ϕ(x, a) forks over ∅. Write F (∅) for the set of formulas forking
over ∅. Want a reminder of the formal definition of forking?
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Applications to Invariant Keisler measures

Forking and universally zero in different contexts

In any theory F (∅) ⊆ O(∅).
• in stable theories F (∅) = O(∅);
• in simple theories, it was recently proved:

• F (∅) ⊊ O(∅) (Chernikov, Hrushovski, Kruckman, Krupiński,
Moconja, Pillay, and Ramsey 2023);

• F (∅) ⊊ O(∅) in the ω-categorical context (Marimon 2023);
• in NIP theories, it was recently proved:

• F (∅) ⊊ O(∅) (Pillay and Stonestrom 2023);
• F (∅) = O(∅) in the ω-categorical context (Braunfeld, Jahel, M.

2024).

Previous examples of F (∅) ⊊ O(∅) are ad-hoc constructions.
Our work shows this phenomenon is pervasive in simple theories
satisfying all desirable tameness conditions.
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Applications to Invariant Keisler measures

F (∅) ⊊ O(∅) in simple homogeneous structures

Corollary 11 (Braunfeld, Jahel and M. 2024)

Let M be simple, k-transitive, homogeneous in a finite (k + 1)-ary
language, k-overlap closed and with free amalgamation. Then, any
IKM of M in the variable x is exchangeable. Moreover,

1 EITHER: Age(M) has n-DAP for all n. In this case there is an
IKM assigning positive measure to every non-forking formula;

2 OR: Age(M) fails n-DAP for some n. In this case,

F (∅) ⊊ O(∅).

For k > 1, there are 2ℵ0-many structures in 2 (Koponen 2018).

These structures are extremely tame (Conant 2017): supersimple,
SU-rank 1, trivial algebraicity, trivial forking, weak elimination of
imaginaries.
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Applications to Invariant Keisler measures

The generic tetrahedron-free 3-hypergraph

Example 12 (The generic tetrahedron-free 3-hypergraph H3
4)

H3
4 is simple, 2-transitive, 2-overlap closed, and with free

amalgamation. It fails 4-DAP.

By our results its IKMs are exchangeable. So,

µ(E(x, ab) ∧ E(x, ac) ∧ E(x, bc)) = 0

regardless of whether abc forms a hyperedge or not.

But forking is trivial in H3
4 (Conant 2017),

so if abc does not form a hyperedge E(x, ab) ∧ E(x, ac) ∧ E(x, bc)
does not fork over ∅, giving F (∅) ⊊ O(∅).
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Applications to Invariant Keisler measures

Problems for the future

Problem 1 (cf. Crane and Towsner 2018)

Can we give representation theorems for the IREs of any arity for
more classes of ω-categorical structures?
Some test-cases:
• the generic triangle-free graph (note: our result only says that its

unary IREs are exchangeable);
• homogeneous C-relations;
• infinite dimensional vector spaces over finite fields.
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Consistent random expansions

Definition 13 (CRE)

A consistent random expansion (CRE) of C by C′ is an assignment
to each H ∈ C of a probability distribution PH on C′[H] satisfying
the following compatibility condition:
let ϕ : H → G be an embedding of structures in C and H ′ ∈ C′[H].
Then,

PH(H ′) = PG(H ′
ϕ),

where H ′
ϕ is the relabelling of H ′ according to ϕ.

Back to main presentation
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The key lemma for exchangeability

Lemma 14 (Braunfeld, Jahel, and M. 2024)

Suppose that for all H1, H2 ∈ C[k], and ϵ > 0, there is some n,
G ∈ C[n] and non-empty families Θi of embeddings of Hi in G such
that for all H′ ∈ C′[k] and G′ ∈ C′[n] we have∣∣∣∣NΘ1(H

′,G′)

|Θ1|
− NΘ2(H

′,G′)

|Θ2|

∣∣∣∣ < ε,

where NΘi(H
′,G′) is the number of embeddings in Θi that are also

embeddings of H′ in G′.
Then every consistent random C′-expansion µ of C is exchangeable.

Back to main presentation
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Forking

Definition 15 (Dividing and forking)

ϕ(x, a) divides over ∅ if there is a sequence (ai|i < ω) in tp(a) such
that {ϕ(x, ai)|i < ω} is k-inconsistent.

ϕ(x, a) forks over ∅ if it implies a disjunction of dividing formulas.

In simple theories forking=dividing. Back to main presentation
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