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Background Clones

Clones

Definition 1 (Clone)

Let B be a (possibly infinite) set.
Let O(n) = BBn

be the set of functions f : Bn → B, and
O :=

⋃
n∈NO(n).

We call C ⊆ O a (function) clone over B if
• C contains all projections;
• C is closed under composition.

For S ⊆ O, ⟨S⟩ is the smallest clone containing S.
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Background Clones

Closed clones

Interested in clones which are closed in the pointwise convergence
topology:1 For S ⊆ O,
f ∈ S ⇔ for all A ⊆ B finite there is g ∈ S such that g↾A = f↾A.

For B finite, topology trivialises (i.e. closed clone=clone).

⟨S⟩ denotes the smallest closed clone containing S.

There is a correspondence between:
• closed clones on B;
• polymorphism clones of relational structures on B.
Definition of polymorphism clone

1If you do not like topology, do not worry! Our main results are also true (and
sometimes nicer) without the topology.
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Background Clones

Monoidal intervals

Let T be a transformation monoid on B
(i.e. unary operations containing Id, and closed under composition).

Closed clones whose unary operations are T form an interval in the
lattice of closed clones on B, known as the monoidal interval of T .

Studying the structure and size of monoidal intervals has a long
history in universal algebra:
• for O(1)

B (Burle 1967);
• for G ↷ B a permutation group (Pálfy and Szendrei 1982;

Kearnes and Szendrei 2001) (with focus on collapse);
• for other monoids (Krokhin 1995);
• over infinite sets (Pinsker 2008).
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Background Minimality

Minimal operations

What is the minimal amount of structure in a clone containing T ?

Definition 2 (Minimal clone)

Let D ⊋ C be closed clones.
D is minimal above C if there is no closed clone E such that
C ⊊ E ⊊ D.

Definition 3 (almost minimal and minimal operations)

The k-ary operation f ∈ O \ C is almost minimal above C if for
each r < k,

⟨C ∪ {f}⟩ ∩ O(r) = C ∩ O(r).

If f is almost minimal above C and ⟨C ∪ {f}⟩ is minimal above C,
then f is minimal above C.

Paolo Marimon, Michael Pinsker Minimal operations over permutation groups



Background Minimality

Minimal operations

What is the minimal amount of structure in a clone containing T ?

Definition 2 (Minimal clone)

Let D ⊋ C be closed clones.
D is minimal above C if there is no closed clone E such that
C ⊊ E ⊊ D.

Definition 3 (almost minimal and minimal operations)

The k-ary operation f ∈ O \ C is almost minimal above C if for
each r < k,

⟨C ∪ {f}⟩ ∩ O(r) = C ∩ O(r).

If f is almost minimal above C and ⟨C ∪ {f}⟩ is minimal above C,
then f is minimal above C.

Paolo Marimon, Michael Pinsker Minimal operations over permutation groups



Background Minimality

Minimal operations

What is the minimal amount of structure in a clone containing T ?

Definition 2 (Minimal clone)

Let D ⊋ C be closed clones.
D is minimal above C if there is no closed clone E such that
C ⊊ E ⊊ D.

Definition 3 (almost minimal and minimal operations)

The k-ary operation f ∈ O \ C is almost minimal above C if for
each r < k,

⟨C ∪ {f}⟩ ∩ O(r) = C ∩ O(r).

If f is almost minimal above C and ⟨C ∪ {f}⟩ is minimal above C,
then f is minimal above C.

Paolo Marimon, Michael Pinsker Minimal operations over permutation groups



Background Minimality

Minimal operations

What is the minimal amount of structure in a clone containing T ?

Definition 2 (Minimal clone)

Let D ⊋ C be closed clones.
D is minimal above C if there is no closed clone E such that
C ⊊ E ⊊ D.

Definition 3 (almost minimal and minimal operations)

The k-ary operation f ∈ O \ C is almost minimal above C if for
each r < k,

⟨C ∪ {f}⟩ ∩ O(r) = C ∩ O(r).

If f is almost minimal above C and ⟨C ∪ {f}⟩ is minimal above C,
then f is minimal above C.

Paolo Marimon, Michael Pinsker Minimal operations over permutation groups



Background Minimality

Basic facts on minimality and almost minimality

• D is minimal above C if and only if D = ⟨C ∪ {f}⟩ for f minimal
above C;

• minimal elements in the interval of T above ⟨T ⟩ correspond to
minimal clones above ⟨T ⟩ which are not essentially unary2;

• ALWAYS, if E ⊋ C, there is f ∈ E \ C almost minimal above C;
We will study minimal operations above ⟨G⟩ for G ↷ B a non-trivial
permutation group.

2f is essentially unary if it depends on only one variable.
Otherwise, it is essential.
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Background Minimality

Oligomorphic permutation groups

We are particularly interested in oligomorphic permutation groups:

Definition 4 (Oligomorphicity, ω-categoricity)

B countably infinite. G ↷ B is oligomorphic if G ↷ Bn has finitely
many orbits for each n ∈ N;
A first-order structure B is ω-categorical if Aut(B) ↷ B is
oligomorphic.

Examples of ω-categorical structures:
• (N,=);
• (Q, <);
• The Random graph;
• Countable vector spaces over finite fields.
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Background Minimality

Oligomorphic permutation groups
We are particularly interested in oligomorphic permutation groups:

Definition 4 (Oligomorphicity, ω-categoricity)

B countably infinite. G ↷ B is oligomorphic if G ↷ Bn has finitely
many orbits for each n ∈ N;
A first-order structure B is ω-categorical if Aut(B) ↷ B is
oligomorphic.

Fact 5 (Existence of minimal operations)

Let C ⊊ D be closed function clones. Suppose either
• B is finite; or
• C = ⟨Aut(B)⟩ for B ω-categorical in a finite relational language.

Then, there is E ⊆ D which is minimal above C.

Note: in general, this can fail when B is infinite.
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Background Previous results

Rosenberg’s five types theorem

Theorem 6 (Five types theorem, Rosenberg 1986)

Let B be finite and f be minimal above ⟨Id⟩. Then, f is one of:
1 a unary operation;
2 a binary operation;
3 a ternary majority operation;
4 a minority of the form x+ y + z in some Boolean group (B,+);
5 a k-ary semiprojection for some k ≥ 3.
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1 a unary operation;
2 a binary operation;
3 a ternary majority operation;
4 a minority of the form x+ y + z in some Boolean group (B,+);
5 a k-ary semiprojection for some k ≥ 3.

A group is Boolean if every non-identity element has order 2.
Ternary minority: an operation m : B3 → B such that

m(x, x, y) ≈ m(x, y, x) ≈ m(y, x, x) ≈ m(y, y, y) ≈ y;
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Background Previous results

Rosenberg’s five types theorem

Theorem 6 (Five types theorem, Rosenberg 1986)

Let B be finite and f be minimal above ⟨Id⟩. Then, f is one of:
1 a unary operation;
2 a binary operation;
3 a ternary majority operation;
4 a minority of the form x+ y + z in some Boolean group (B,+);
5 a k-ary semiprojection for some k ≥ 3.

Semiprojection: f : Bk → B such that there is an i ∈ {1, . . . , k}
such that whenever (a1, . . . , ak) is a non-injective tuple from B,

f(a1, . . . , ak) = ai.
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Background Previous results

The oligomorphic case

Bodirsky and Chen 2007 classify minimal operations above
oligomorphic permutation groups.

Theorem 7 (Oligomorphic case, Bodirsky and Chen 2007)

Let G ↷ B be an oligomorphic permutation group.
Let f be minimal above ⟨G⟩. Then, f is one of:

1 a unary operation;
2 a binary operation;
3 a ternary quasi-majority operation;
4 a k-ary quasi-semiprojection for some 3 ≤ k ≤ 2r − s, where r is

the number of G-orbitals and s is the number of G-orbits.

Paolo Marimon, Michael Pinsker Minimal operations over permutation groups



Background Previous results

The oligomorphic case

Bodirsky and Chen 2007 classify minimal operations above
oligomorphic permutation groups.

Theorem 7 (Oligomorphic case, Bodirsky and Chen 2007)

Let G ↷ B be an oligomorphic permutation group.
Let f be minimal above ⟨G⟩. Then, f is one of:

1 a unary operation;
2 a binary operation;
3 a ternary quasi-majority operation;
4 a k-ary quasi-semiprojection for some 3 ≤ k ≤ 2r − s, where r is

the number of G-orbitals and s is the number of G-orbits.

Paolo Marimon, Michael Pinsker Minimal operations over permutation groups



Background Previous results

The oligomorphic case
Bodirsky and Chen 2007 classify minimal operations above
oligomorphic permutation groups.

Theorem 7 (Oligomorphic case, Bodirsky and Chen 2007)

Let G ↷ B be an oligomorphic permutation group.
Let f be minimal above ⟨G⟩. Then, f is one of:

1 a unary operation;
2 a binary operation;
3 a ternary quasi-majority operation;
4 a k-ary quasi-semiprojection for some 3 ≤ k ≤ 2r − s, where r is

the number of G-orbitals and s is the number of G-orbits.

Ternary quasi-majority:3 an operation m : B3 → B such that

m(x, x, y) ≈ m(x, y, x) ≈ m(y, x, x) ≈ m(x, x, x)��XX≈ x;

3“quasi”:= we don’t ask that f(x, . . . , x) ≈ x.
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Background Previous results

The oligomorphic case
Bodirsky and Chen 2007 classify minimal operations above
oligomorphic permutation groups.

Theorem 7 (Oligomorphic case, Bodirsky and Chen 2007)

Let G ↷ B be an oligomorphic permutation group.
Let f be minimal above ⟨G⟩. Then, f is one of:

1 a unary operation;
2 a binary operation;
3 a ternary quasi-majority operation;
4 a k-ary quasi-semiprojection for some 3 ≤ k ≤ 2r − s, where r is

the number of G-orbitals and s is the number of G-orbits.

Quasi-semiprojection: f : Bk → B such that there is an
i ∈ {1, . . . , k} and g ∈ G such that whenever (a1, . . . , ak) is a
non-injective tuple,

f(a1, . . . , ak) = gai.
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Background Previous results

The oligomorphic case

Bodirsky and Chen 2007 classify minimal operations above
oligomorphic permutation groups.

Theorem 7 (Oligomorphic case, Bodirsky and Chen 2007)

Let G ↷ B be an oligomorphic permutation group.
Let f be minimal above ⟨G⟩. Then, f is one of:

1 a unary operation;
2 a binary operation;
3 a ternary quasi-majority operation;
4 a k-ary quasi-semiprojection for some 3 ≤ k ≤ 2r − s, where r is

the number of G-orbitals and s is the number of G-orbits.

Note: No minority type!
We obtain better results even in this case!
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Minimal operations above permutation groups Main Theorem

The Main Theorem

Theorem 8 (Minimal operation, MP 2024)

Let G ↷ B be non-trivial with s many orbits (s possibly infinite). Let
f be a minimal operation above ⟨G⟩. Then, f is one of:

1 a unary operation;
2 a binary operation;

3 a ternary quasi-minority operation of the form αq for α ∈ G,
where

• G is a Boolean group acting freely on B with s = 2n or infinite;
• the operation q is a G-invariant Boolean Steiner 3-quasigroup.

4 f is a k-ary orbit-semiprojection for 3 ≤ k ≤ s.

• type 3 strengthens quasi-minority. Essentially never occurs;
• type 4 strengthens quasi-semiprojection. Arity bounded by orbits;
• No quasi-majorities!
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Minimal operations above permutation groups Main Theorem

The Main Theorem

Theorem 8 (Minimal operation, MP 2024)

Let G ↷ B be non-trivial with s many orbits (s possibly infinite). Let
f be a minimal operation above ⟨G⟩. Then, f is one of:

1 a unary operation;
2 a binary operation;

3 a ternary quasi-minority operation of the form αq for α ∈ G,
where

• G is a Boolean group acting freely on B with s = 2n or infinite;
• the operation q is a G-invariant Boolean Steiner 3-quasigroup.

4 f is a k-ary orbit-semiprojection for 3 ≤ k ≤ s.

In the oligomorphic case we improve on Bodirsky and Chen 2007:
• We reduced from four to three types (G ↷ B is not free);
• Stronger characterisation of the quasi-semiprojection case.
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Minimal operations above permutation groups The minimal operations

G-invariant Boolean Steiner 3-quasigroups

Definition 9
A G-invariant Boolean Steiner 3-quasigroup3 is a symmetric
ternary minority operation q satisfying:

q(x, y, q(x, y, z)) ≈ z ; (SQS)
q(x, y, q(z, y, w)) ≈ q(x, z, w) ; (Bool)

for all α, β, γ ∈ G, q(αx, βy, γz) ≈ αβγq(x, y, z). (Inv)

3Studied in universal algebra (Quackenbush 1975; Ganter and Werner 1975)
and design theory (Lindner and Rosa 1978).
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Minimal operations above permutation groups The minimal operations

G-invariant Boolean Steiner 3-quasigroups

Definition 9
A G-invariant Boolean Steiner 3-quasigroup3 is a symmetric
ternary minority operation q satisfying:

q(x, y, q(x, y, z)) ≈ z ; (SQS)
q(x, y, q(z, y, w)) ≈ q(x, z, w) ; (Bool)

for all α, β, γ ∈ G, q(αx, βy, γz) ≈ αβγq(x, y, z). (Inv)

(SQS) yields that q(x1, x2, x3) = x4 ∧
∧

i<j≤4 xi ̸= xj is a
Steiner quadruple system on B: a 4-hypergraph on B such that
every three vertices are in a unique 4-hyperedge.

Steiner 3-quasigroups correspond to Steiner quadruple systems on B.
3Studied in universal algebra (Quackenbush 1975; Ganter and Werner 1975)

and design theory (Lindner and Rosa 1978).
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Minimal operations above permutation groups The minimal operations

G-invariant Boolean Steiner 3-quasigroups

Definition 9
A G-invariant Boolean Steiner 3-quasigroup3 is a symmetric
ternary minority operation q satisfying:

q(x, y, q(x, y, z)) ≈ z ; (SQS)
q(x, y, q(z, y, w)) ≈ q(x, z, w) ; (Bool)

for all α, β, γ ∈ G, q(αx, βy, γz) ≈ αβγq(x, y, z). (Inv)

Correspond to x+ y + z on a Boolean group on B.

3Studied in universal algebra (Quackenbush 1975; Ganter and Werner 1975)
and design theory (Lindner and Rosa 1978).
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Minimal operations above permutation groups The minimal operations

G-invariant Boolean Steiner 3-quasigroups

Definition 9
A G-invariant Boolean Steiner 3-quasigroup is a symmetric
ternary minority operation q satisfying:

q(x, y, q(x, y, z)) ≈ z ; (SQS)
q(x, y, q(z, y, w)) ≈ q(x, z, w) ; (Bool)

for all α, β, γ ∈ G, q(αx, βy, γz) ≈ αβγq(x, y, z). (Inv)

q(x, y, z) also induces a Boolean Steiner 3-quasigroup on the G-orbits.
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Minimal operations above permutation groups The minimal operations

Description of minimal minorities

Theorem 10 (Description of minimal minorities, MP 2024)

Let G ↷ B be a Boolean group acting freely on B with s many orbits.

• All G-invariant Boolean Steiner 3-quasigroups are minimal above ⟨G⟩;
• There are G-invariant Boolean Steiner 3-quasigroups if and only if

s = 2n for some n ∈ N, or is infinite;

• For s = 2n, the number of G-invariant Boolean Steiner 3-quasigroups
is 1 for n = 0, and for n ≥ 1 it is

(2n − 1)!|G|(2n−n−1)∏n−1
k=0(2

n − 2k)
.
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Minimal operations above permutation groups The minimal operations

Description of minimal minorities

Theorem 10 (Description of minimal minorities, MP 2024)

Let G ↷ B be a Boolean group acting freely on B with s many orbits.

• All G-invariant Boolean Steiner 3-quasigroups are minimal above ⟨G⟩;
• There are G-invariant Boolean Steiner 3-quasigroups if and only if

s = 2n for some n ∈ N, or is infinite;

• For s = 2n, the number of G-invariant Boolean Steiner 3-quasigroups
is 1 for n = 0, and for n ≥ 1 it is

(2n − 1)!|G|(2n−n−1)∏n−1
k=0(2

n − 2k)
.

Counting G-invariant Boolean Steiner 3-quasigroups requires solving a small
problem in projective geometry.
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Minimal operations above permutation groups The minimal operations

Orbit-semiprojections
f is an orbit-semiprojection if there is an i ∈ {1, . . . , k} and g ∈ G
such that whenever at least two of the aj lie in the same orbit,

f(a1, . . . , ak) = g(ai).

• Almost minimal k-ary orbit-semiprojections exist for all
2 ≤ k ≤ s;

• Pálfy 1986: k-ary semiprojections minimal above ⟨Id⟩ exist for
each 2 ≤ k ≤ |B|.
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Minimal operations above permutation groups The minimal operations

Orbit-semiprojections
f is an orbit-semiprojection if there is an i ∈ {1, . . . , k} and g ∈ G
such that whenever at least two of the aj lie in the same orbit,

f(a1, . . . , ak) = g(ai).

Theorem 11 (Pálfy’s theorem for orbit-semiprojections, MP 2024)

Let G ↷ B with s-many orbits be finite or oligomorphic. Then, for all
2 ≤ k ≤ s, there is a k-ary orbit-semiprojection minimal above ⟨G⟩.
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Minimal operations above permutation groups The minimal operations

Orbit-semiprojections
f is an orbit-semiprojection if there is an i ∈ {1, . . . , k} and g ∈ G
such that whenever at least two of the aj lie in the same orbit,

f(a1, . . . , ak) = g(ai).

Theorem 11 (Pálfy’s theorem for orbit-semiprojections, MP 2024)

Let G ↷ B with s-many orbits be finite or oligomorphic. Then, for all
2 ≤ k ≤ s, there is a k-ary orbit-semiprojection minimal above ⟨G⟩.

When G is finite (non-trivial), taking b ∈ B in an orbit of size > 1, let

f(a1, . . . , ak) :=

{
b if a1 ∼ b and a1, . . . , ak are all in distinct orbits;
a1 otherwise.
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Minimal operations above permutation groups The minimal operations

Orbit-semiprojections
f is an orbit-semiprojection if there is an i ∈ {1, . . . , k} and g ∈ G
such that whenever at least two of the aj lie in the same orbit,

f(a1, . . . , ak) = g(ai).

Theorem 11 (Pálfy’s theorem for orbit-semiprojections, MP 2024)

Let G ↷ B with s-many orbits be finite or oligomorphic. Then, for all
2 ≤ k ≤ s, there is a k-ary orbit-semiprojection minimal above ⟨G⟩.

When G ↷ B is oligomorphic, taking b ∈ B in an orbit of size > 1,
letting γ belong to a minimal closed (Gb, G)-biact,3

f(a1, . . . , ak) :=

{
b if a1 ∼ b and a1, . . . , ak are all in distinct orbits;
γa1 otherwise.

3A (Gb, G)-biact is a set I ⊆ G such that GbIG ⊆ I
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Minimal operations above permutation groups The minimal operations

Orbit-semiprojections
f is an orbit-semiprojection if there is an i ∈ {1, . . . , k} and g ∈ G
such that whenever at least two of the aj lie in the same orbit,

f(a1, . . . , ak) = g(ai).

Theorem 11 (Pálfy’s theorem for orbit-semiprojections, MP 2024)

Let G ↷ B with s-many orbits be finite or oligomorphic. Then, for all
2 ≤ k ≤ s, there is a k-ary orbit-semiprojection minimal above ⟨G⟩.

• always holds for minimality in the lattice of all clones (rather
than closed clones);

• Problem: Find G ↷ B with three orbits such that there is no
ternary orbit-semiprojection minimal above ⟨G⟩.
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Orbit-semiprojections
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Minimal operations above permutation groups Almost minimal operations

Methods: almost minimality

To classify minimal operations, we first classify almost minimal
operations above ⟨G⟩:
• Start from a weak version of Rosenberg’s Theorem for almost

minimal operations above a monoid without constant operations
(implicit in Bodirsky and Chen 2007);

• Show that certain behaviours cannot be witnessed by almost
minimal operations since they give rise to non-injective unary
operations.

This splits into three cases:
• G ↷ B not a Boolean group acting freely on B;
• G ↷ B a Boolean group acting freely on B with |G| > 2;
• Z2 ↷ B acting freely.
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Minimal operations above permutation groups Almost minimal operations

Case1: The three types

Lemma 12 (Three types lemma, MP 2024)

Let G ↷ B with s-many orbits be such that G is not a Boolean
group acting freely on B. Let f be almost minimal above ⟨G⟩. Then,
f is one of:

1 a unary operation;
2 a binary operation;
3 a k-ary orbit-semiprojection for 3 ≤ k ≤ s.
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Minimal operations above permutation groups Almost minimal operations

Case 2: the Boolean case

Lemma 13 (Boolean case, MP 2024)

Let G ↷ B be a Boolean group acting freely on B with s-many orbits
and |G| > 2. Let f be an almost minimal operation above ⟨G⟩. Then,
f is one of:

1 a unary operation;
2 a binary operation;
3 a G-quasi-minority;
4 a k-ary orbit-semiprojection for 3 ≤ k ≤ s.

A G-quasi-minority is a ternary operation such that for all β ∈ G,

m(y, x, βx) ≈ m(x, βx, y) ≈ m(x, y, βx) ≈ m(βy, βy, βy).
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Minimal operations above permutation groups Almost minimal operations

Case 3: the Z2 case

Lemma 14 (Z2 case, MP 2024)

Let Z2 act freely on B with s-many orbits. Let f be an almost minimal
operation above ⟨Z2⟩. Then, f is one of

1 a unary operation;

2 a G-quasi-minority;

3 an odd majority;

4 an odd Malcev, up to permuting variables;

5 a k-ary orbit-semiprojection for 2 ≤ k ≤ s.

An odd majority m is a ternary quasi-majority such that for γ ̸= Id in Z2,

m(y, x, γx) ≈ m(x, γx, y) ≈ m(x, y, γx) ≈ m(y, y, y).

An odd Malcev is such that M(x, γy, z) is an odd majority.
Odd majorities and odd Malcev cannot be minimal!
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Applications to CSPs

Motivation from CSPs

τ := finite relational language.
B := a fixed τ -structure.

Definition 15 (CSP(B))
CSP(B) is the following computational problem:
• INPUT: A finite τ -structure A;
• OUTPUT: Is there a homomorphism A → B?

We study CSP(B) for B finite or ω-categorical.
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Applications to CSPs

The algebraic approach to CSPs

Algebraic approach to CSPs:

The polymorphisms of B capture the computational complexity of
CSP(B).

Highly successful in the finite setting:

Theorem 16 (Bulatov 2017; Zhuk 2017)

Let B be finite. Then:
• EITHER B has a Siggers polymorphism.3

In this case, CSP(B) is in P;
• OR B “pp-constructs” EVERYTHING (i.e., all finite structures)

In this case, CSP(B) is NP-complete.
3A polymorphism s : B6 → B such that

s(x, y, x, z, y, z) ≈ s(y, x, z, x, z, y).
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Applications to CSPs

The algebraic approach to CSPs

Algebraic approach to CSPs:

The polymorphisms of B capture the computational complexity of
CSP(B).

Often successful for B ω-categorical: complexity dichotomies for
CSPs of structures first-order definable in:
• (Q, <) (Bodirsky and Kára 2010);
• homogeneous graphs (Bodirsky, Martin, Pinsker, and Pongrácz 2019);
• countable unary structures (Bodirsky and Mottet 2018);

...
Bodirsky-Pinsker conjecture: CSPs of a large class of ω-categorical
structures3 satisfy a complexity dichotomy analogous to the
finite-domain one.

3First-order reducts of finitely bounded homogeneous structures.
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Applications to CSPs

Understanding low arity polymorphisms

Question 1

What is the minimal amount of structure in Pol(B) when CSP(B) is
not NP-hard (due to pp-constructing EVERYTHING)?

• Sufficient to consider case of a (model complete) core:
Aut(B) = End(B);

• We can assume Pol(B) is essential:
if Pol(B) is NOT essential, then B pp-interprets EVERYTHING;

• Bottom-up approach to CSPs:
several complexity classifications identify the behaviours of low
arity essential polymorphisms.
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Applications to CSPs

Binary essential polymorphisms
Complexity classifications of ω-categorical CSPs often show that
under tame assumptions B has a binary essential polymorphism!

(Bodirsky and Kára 2008):

(Bodirsky and Kára 2010)

(Bodirsky and Pinsker 2014):

(Bodirsky 2021; Mottet and Pinsker 2024):

(Mottet, Nagy, and Pinsker 2024)

Also done in:
• Bodirsky, Jonsson,

and Van Pham
2017;

• Bodirsky and
Mottet 2018;

• Kompatscher and
Van Pham 2018;

• Bodirsky, Martin,
Pinsker, and
Pongrácz 2019;

• Bodirsky and
Greiner 2020.
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Applications to CSPs

Binary essential polymorphisms
Complexity classifications of ω-categorical CSPs often show that
under tame assumptions B has a binary essential polymorphism!
(Bodirsky and Kára 2008):

(Bodirsky and Kára 2010)

(Bodirsky and Pinsker 2014):

(Bodirsky 2021; Mottet and Pinsker 2024):

(Mottet, Nagy, and Pinsker 2024)

Also done in:
• Bodirsky, Jonsson,

and Van Pham
2017;

• Bodirsky and
Mottet 2018;

• Kompatscher and
Van Pham 2018;

• Bodirsky, Martin,
Pinsker, and
Pongrácz 2019;

• Bodirsky and
Greiner 2020.

ISSUE: These techniques are ad-hoc!
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Applications to CSPs

A question of Bodirsky

Question 2 (Question 24 in Bodirsky 2021)

Suppose B is an ω-categorical (model complete) core and
Pol(B) has an essential polymorphism.
Does Pol(B) have a binary essential polymorphism?
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Question 2 (Question 24 in Bodirsky 2021)

Suppose B is an ω-categorical (model complete) core and
Pol(B) has an essential polymorphism.
Does Pol(B) have a binary essential polymorphism?
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Question 2 (Question 24 in Bodirsky 2021)

Suppose B is an ω-categorical (model complete) core and
Pol(B) has an essential polymorphism.
Does Pol(B) have a binary essential polymorphism?

Answer: No.(Though true if Aut(B) has ≤ 2 orbits.)
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Applications to CSPs

A question of Bodirsky

Question 2 (Question 24 in Bodirsky 2021)

Suppose B is an ω-categorical (model complete) core and
Pol(B) has an essential polymorphism.
Does Pol(B) have a binary essential polymorphism?

Answer: No.(Though true if Aut(B) has ≤ 2 orbits.)
Counterexample: for any oligomorphic Aut(B) ↷ B with s orbits
for s ≥ 3, there is an ω-categorical structure B′ such that

Pol(B′) := ⟨Aut(B) ∪ {f}⟩,

where f is an essential s-ary orbit-semiprojection.
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Applications to CSPs

Why easy problems lie above binary operations
Moral answer (for the purposes of CSPs): Yes!

Theorem 16 (Finding binary operations, MP 2024)

Let G ↷ B be such that G is not a Boolean group acting freely on
B. Suppose that C ∩ O(1) = G, and
(⋆) C has no uniformly continuous clone homomorphism4 to P{0,1},

the clone of projections on a two-element set.
Then, C contains a binary essential operation.

4ξ : C → P{0,1} is uniformly continuous if there is some finite B′ ⊆ B such
that f↾B′ = g↾B′ implies ξ(f) = ξ(g).
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B. Suppose that C ∩ O(1) = G, and
(⋆) C has no uniformly continuous clone homomorphism4 to P{0,1},
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For C = Pol(B) and B finite or ω-categorical:
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• (⋆)⇔ B does NOT pp-interpret EVERYTHING.
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Applications to CSPs

Why easy problems lie above binary operations

Theorem 16 (Finding binary operations, MP 2024)

Let G ↷ B be such that G is not a Boolean group acting freely on
B. Suppose that C ∩ O(1) = G, and
(⋆) C has no uniformly continuous clone homomorphism to P{0,1},

the clone of projections on a two-element set.
Then, C contains a binary essential operation.

Proof idea.
Suppose by contrapositive that C ∩ O(2) = ⟨G⟩ ∩ O(2).
Then, all ternary operations in C are almost minimal.
So C ∩ O(3)=essentially unary operations and orbit-semiprojections.
These will only satisfy trivial identities, which is sufficient to build a
uniformly continuous homomorphism to P{0,1}.
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Applications to CSPs

Thank you!
A brief recap:
• We classify minimal (and almost minimal) operations above

arbitrary permutation groups;
• We get fewer types than those of Rosenberg’s theorem above the

trivial group;
• We give general reasons why when B is an ω-categorical (model

complete) core and CSP(B) is not NP-hard, we can find
binary essential polymorphisms;

QR code to preprint:
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Extras

Polymorphisms

Let B be a relational structure.

Definition 17 (Polymorphisms)

f : Bn → B is a polymorphism if it preserves all relations of B:a11
...
a1k

 , . . . ,

an1
...
ank

 ∈ RB ⇒

f(a11, . . . , a
n
1 )

...
f(a1k, . . . , a

n
k)

 ∈ RB.

We call Pol(B) the set of polymorphisms of B.
The polymorphism clone of B.

• Unary polymorphism = endomorphism;
• Projections to one coordinate are always polymorphisms.
Back to main presentation
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Extras

pp-interpretations and pp-constructions

A pp-formula is a first-order formula consisting only of existential
quantifiers, conjunctions, and atomic formulas.

Definition 18 (pp-interpretation, pp-construction)

B pp-interprets A if there is partial surjective h : Bd → A such that
for every R ⊆ An that is a relation of A (or A, or equality on A),
h−1(R) is defined by a pp-formula in Bnd.

B pp-constructs A if it is homomorphically equivalent to a structure
that pp-interprets A.
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