1 Preliminaries

1.1 Clones and minimal operations

Let *B* be a (possibly infinite) set.

For $n \in \mathbb{N}$, $\mathcal{O}^{(n)}$ is the set B^{B^n} of functions $B^n \to B$. $\mathcal{O} := \bigcup_{n \in \mathbb{N}} \mathcal{O}^{(n)}$.

Definition 1 (Function clone). A **function clone** on *B* is a set $C \subseteq \mathcal{O}$ containing all projections and closed under composition of functions.

Definition 2 (Notions of closure). For $S \subseteq \mathcal{O}$,

 $\langle \mathcal{S} \rangle$ is the smallest function clone containing \mathcal{S} .

We study **closed clones** with respect to the **pointwise convergence topology**: for $S \subseteq \mathcal{O}$, $f \in \overline{\mathcal{S}}$ if for each finite $A \subseteq B$, there is some $g \in \mathcal{S}$ such that $g|_A = f|_A$. $\overline{\langle \mathcal{S} \rangle}$ is the smallest closed function clone containing \mathcal{S} .

We are interested in closed function clones because they correspond to **polymor-phism clones** of relational structures.

Still, our results also hold in the lattice of (not necessarily closed) function clones.

Definition 3. Let $\mathcal{D} \supseteq \mathcal{C}$ be closed function clones.

We say that \mathcal{D} is **minimal above** \mathcal{C} if there is no closed function clone \mathcal{E} such that $\mathcal{C} \subseteq \mathcal{E} \subseteq \mathcal{D}$.

The *k*-ary operation $f \in \mathcal{O} \setminus \mathcal{C}$ is **almost minimal** above \mathcal{C} if, for each r < k, $\overline{\langle \mathcal{C} \cup \{f\} \rangle} \cap \mathcal{O}^{(r)} = \mathcal{C} \cap \mathcal{O}^{(r)}$.

We say that $f \in \mathcal{O} \setminus \mathcal{C}$ is **minimal above** \mathcal{C} if it is almost minimal above \mathcal{C} and $\overline{\langle \mathcal{C} \cup \{f\} \rangle}$ is minimal above \mathcal{C} .

Fact 4. A closed function clone \mathcal{D} is minimal above \mathcal{C} if and only if there is some operation f which is minimal above \mathcal{C} and such that $\overline{\langle \mathcal{C} \cup \{f\} \rangle} = \mathcal{D}$.

Definition 5 (oligomorphicity, ω -categoricity). B countably infinite. $G \curvearrowright B$ is **oligomorphic** if $G \curvearrowright B^n$ has finitely many orbits for each $n \in \mathbb{N}$.

A first-order structure \mathbb{B} is ω -categorical if $\operatorname{Aut}(\mathbb{B}) \cap B$ is oligomorphic. Examples: $(\mathbb{N}, =), (\mathbb{Q}, <)$, countable vector spaces over finite fields.

Fact 6. Let $C \subsetneq \mathcal{D}$ be closed function clones. Suppose either

- *B* is finite; or
- $C = \overline{\langle \operatorname{Aut}(\mathbb{B}) \rangle}$ for \mathbb{B} an ω -categorical structure in a finite relational language.

Then, there is $\mathcal{E} \subseteq \mathcal{D}$ *which is minimal above* \mathcal{C} .

1.2 Rosenberg's Five Types Theorem and friends

Definition 7. • a **ternary quasi-majority** is a ternary operation *m* such that

$$m(x,x,y) \approx m(x,y,x) \approx m(y,x,x) \approx m(x,x,x)$$
;

• a **ternary quasi-minority** is a ternary operation m such that

$$\mathfrak{m}(x,x,y) \approx \mathfrak{m}(x,y,x) \approx \mathfrak{m}(y,x,x) \approx \mathfrak{m}(y,y,y)$$
;

• a **quasi-semiprojection** is a k-ary operation f such that there is an $i \in \{1, ..., k\}$ and a unary operation g such that whenever $(a_1, ..., a_k)$ is a non-injective tuple from B,

$$f(a_1,\ldots,a_k)=g(a_i).$$

We remove the prefix "quasi" when the operation is **idempotent**, i.e., satisfies $f(x,...,x) \approx x$; in the case of a semiprojection, idempotency implies $g(x) \approx x$.

Theorem 8 (Five Types Theorem [3]). *Let B be finite and let f be a minimal operation above* $\langle Id \rangle$ *. Then f is of one of the following types:*

- 1. a unary operation;
- 2. a binary operation;
- 3. a ternary majority operation;
- 4. a ternary minority operation of the form x + y + z in a Boolean group (B, +);
- 5. a k-ary semiprojection for some $k \geq 3$.

A **Boolean group** (a.k.a. elementary Abelian 2-group) is a group where every non-identity element has order 2. They are just direct sums of copies of \mathbb{Z}_2 .

Theorem 9 (Four types, oligomorphic case [1]). Let $G \curvearrowright B$ be an oligomorphic permutation group. Let f be minimal above $\overline{\langle G \rangle}$. Then, f is of one of the following types:

- 1. a unary operation;
- 2. a binary operation;
- 3. a ternary quasi-majority operation;
- 4. a k-ary quasi-semiprojection for some $3 \le k \le 2r s$, where r is the number of G-orbitals (orbits under the componentwise action of G on pairs) and s is the number of G-orbits.

2 Minimal operations over permutation groups

We classify minimal operations above $\overline{\langle G \rangle}$ for $G \curvearrowright B$ an arbitrary non-trivial permutation group.

Our proof strategy: first classify almost minimal operations above $\overline{\langle G \rangle}$. We use a weak version of Theorem 8 for almost minimal operations above a monoid (implicit in [1]) and show that certain behaviours cannot be witnessed by almost minimal operations since they give rise to non-injective unary operations.

Main Theorem 10 (Minimal operations over permutation groups [2]). Let $G \curvearrowright B$ be a non-trivial permutation group with s many orbits (where s is possibly infinite). Let f be a minimal operation above $\overline{\langle G \rangle}$. Then, f is of one of the following types:

- 1. a unary operation;
- 2. a binary operation;
- 3. a ternary quasi-minority operation of the form αq for $\alpha \in G$, where
 - *G* is a Boolean group acting freely on *B*;
 - $s = 2^n$ for some $n \in \mathbb{N}$, or is infinite;
 - the operation q is a G-invariant Boolean Steiner 3-quasigroup.
- 4. a k-ary orbit-semiprojection for $3 \le k \le s$.

Remark 11. Quasi-majorities do not appear!

Minimal quasi-minorites almost never occur and are completely understood; We specify the behaviour of quasi-semiprojections on the orbits and bound their arity by the number of orbits rather than the number of orbitals.

Definition 12. $G \cap B$ is **free** if the only group element fixing any element of B is the identity (i.e., ga = a implies g = 1).

Definition 13. Let $G \cap B$. The k-ary operation f on B is an **orbit-semiprojection** if there is $i \in \{1, ..., k\}$ and a unary operation $g \in \overline{G}$ such that for any tuple $(a_1, ..., a_k)$ where at least two of the a_j lie in the same G-orbit,

$$f(a_1,\ldots,a_k)=g(a_i).$$

Definition 14. A *G*-invariant Boolean Steiner 3-quasigroup is a symmetric ternary minority operation q also satisfying the following conditions:

$$q(x, y, q(x, y, z)) \approx z;$$
 (SQS)

$$q(x, y, q(z, y, w)) \approx q(x, z, w);$$
 (Bool)

for all
$$\alpha, \beta, \gamma \in G$$
, $\mathfrak{q}(\alpha x, \beta y, \gamma z) \approx \alpha \beta \gamma \mathfrak{q}(x, y, z)$. (Inv)

Theorem 15 (Description of minimal minorities [2]). *Let* $G \cap B$ *be a Boolean group acting freely on* B *with* s *many orbits.*

- All G-invariant Boolean Steiner 3-quasigroups are minimal above $\overline{\langle G \rangle}$;
- There are G-invariant Boolean Steiner 3-quasigroups if and only if $s = 2^n$ for some $n \in \mathbb{N}$, or is infinite;
- For $s = 2^n$, the number of G-invariant Boolean Steiner 3-quasigroups is 1 for n = 0, and for $n \ge 1$ it is

$$\frac{(2^n-1)!|G|^{(2^n-n-1)}}{\prod_{k=0}^{n-1}(2^n-2^k)}.$$

Theorem 16 (Pálfy's Theorem for orbit-semiprojections [2]). *Let* $G \curvearrowright B$ *with s-many orbits be finite or oligomorphic. Then, for all* $2 \le k \le s$, *there is a k-ary orbit-semiprojection minimal above* $\overline{\langle G \rangle}$.

2.1 Finding binary essential operations

Definition 17. We say that a k-ary operation f is **essentially unary** if it depends on at most one variable. Otherwise, we say that f is **essential**.

Definition 18. A map $\eta: \mathcal{C} \to \mathcal{D}$ is a **clone homomorphism** if it preserves arities and universally quantified identities.

For D finite, η is **uniformly continuous** if there exists a finite $A \subseteq C$ such that $f_{\upharpoonright A} = g_{\upharpoonright A}$ implies $\eta(f) = \eta(g)$ for all $f, g \in C$.

Theorem 19 (Finding binary operations, [2]). Let $G \curvearrowright B$ be such that G is not a Boolean group acting freely on B. Suppose that $C \cap \mathcal{O}^{(1)} = \overline{G}$, and that C has no uniformly continuous clone homomorphism to $\mathcal{P}_{\{0,1\}}$, the clone of projections on a two-element set. Then, C contains a binary essential operation.

Theorem 19 has applications to the study of CSPs of ω -categorical structures: if $\mathbb B$ is a model complete core which does not pp-interpret EVERYTHING, then $\operatorname{Pol}(\mathbb B)$ has a binary essential operation.

References

- [1] M. Bodirsky, H. Chen. Oligomorphic clones. <u>Algebra Universalis</u> 57 (2007).
- [2] P. Marimon, M. Pinsker. Minimal operations over permutation groups. 2024. arXiv: 2410.22060 [math.RA].
- [3] I. G. Rosenberg. "Minimal clones I: the five types". <u>Lectures in universal algebra</u>. Elsevier, 1986.