1 Preliminaries

1.1 Clones and minimal operations

Let *B* be a (possibly infinite) set. For $n \in \mathbb{N}$, $\mathcal{O}^{(n)}$ is the set B^{B^n} of functions $B^n \to B$. $\mathcal{O} := \bigcup_{n \in \mathbb{N}} \mathcal{O}^{(n)}$.

Definition 1 (Function clone). A **function clone** on *B* is a set $C \subseteq O$ containing all projections and closed under composition of functions.

Definition 2 (Notions of closure). For $\mathcal{S}\subseteq \mathcal{O},$

 $\langle \mathcal{S} \rangle$ is the smallest function clone containing $\mathcal{S}.$

We study clones which are **closed** with respect to the **pointwise convergence topology**: for $S \subseteq O$, $f \in \overline{S}$ if for each finite $A \subseteq B$, there is some $g \in S$ such that $g|_A = f|_A$.

 $\overline{\langle S \rangle}$ is the smallest closed function clone containing S.

We are interested in closed function clones because they correspond to **polymorphism clones** of relational structures.

Still, our results also hold in the lattice of (not necessarily closed) function clones.

Definition 3. Let $\mathcal{D} \supseteq \mathcal{C}$ be closed function clones.

We say that \mathcal{D} is **minimal above** \mathcal{C} if there is no closed function clone \mathcal{E} such that $\mathcal{C} \subsetneq \mathcal{E} \subsetneq \mathcal{D}$.

The *k*-ary operation $f \in \mathcal{O} \setminus \mathcal{C}$ is almost minimal above \mathcal{C} if, for each r < k, $\overline{\langle \mathcal{C} \cup \{f\} \rangle} \cap \mathcal{O}^{(r)} = \mathcal{C} \cap \mathcal{O}^{(r)}$.

We say that $f \in \mathcal{O} \setminus \mathcal{C}$ is **minimal above** \mathcal{C} if it is almost minimal above \mathcal{C} and $\overline{\langle \mathcal{C} \cup \{f\} \rangle}$ is minimal above \mathcal{C} .

Fact 4. A closed function clone \mathcal{D} is minimal above \mathcal{C} if and only if there is some operation f which is minimal above \mathcal{C} and such that $\overline{\langle \mathcal{C} \cup \{f\} \rangle} = \mathcal{D}$.

Definition 5 (oligomorphicity, ω -categoricity). *B* countably infinite. $G \curvearrowright B$ is **oligomorphic** if $G \curvearrowright B^n$ has finitely many orbits for each $n \in \mathbb{N}$.

A first-order structure **B** is ω -categorical if Aut(**B**) \frown *B* is oligomorphic. Examples: (**N**, =), (**Q**, <), countable vector spaces over finite fields.

Fact 6. Let $C \subsetneq D$ be closed function clones. Suppose either

• B is finite; or

• $C = \overline{\langle \operatorname{Aut}(\mathbb{B}) \rangle}$ for \mathbb{B} an ω -categorical structure in a finite relational language. Then, there is $\mathcal{E} \subseteq D$ which is minimal above C.

1.2 Rosenberg's Five Types Theorem and friends

Definition 7. • a **ternary quasi-majority** is a ternary operation *m* such that

 $m(x, x, y) \approx m(x, y, x) \approx m(y, x, x) \approx m(x, x, x)$;

• a **ternary quasi-minority** is a ternary operation m such that

 $\mathfrak{m}(x,x,y)\approx\mathfrak{m}(x,y,x)\approx\mathfrak{m}(y,x,x)\approx\mathfrak{m}(y,y,y)$;

• a **quasi-semiprojection** is a *k*-ary operation *f* such that there is an $i \in \{1, ..., k\}$ and a unary operation *g* such that whenever $(a_1, ..., a_k)$ is a non-injective tuple from *B*,

 $f(a_1,\ldots,a_k)=g(a_i).$

We remove the prefix "quasi" when the operation is **idempotent**, i.e., satisfies $f(x, ..., x) \approx x$; in the case of a semiprojection, idempotency implies $g(x) \approx x$.

Theorem 8 (Five Types Theorem [3]). Let *B* be finite and let *f* be a minimal operation above $\langle Id \rangle$. Then *f* is of one of the following types:

- 1. a unary operation;
- 2. *a binary operation;*
- 3. a ternary majority operation;
- 4. *a ternary minority operation of the form* x + y + z *in a Boolean group* (B, +)*;*
- 5. a k-ary semiprojection for some $k \ge 3$.

A **Boolean group** (a.k.a. elementary Abelian 2-group) is a group where every non-identity element has order 2. They are just direct sums of copies of \mathbb{Z}_2 .

Theorem 9 (Four types, oligomorphic case [1]). Let $G \curvearrowright B$ be an oligomorphic permutation group. Let f be minimal above $\overline{\langle G \rangle}$. Then, f is of one of the following types:

- 1. a unary operation;
- 2. *a binary operation;*
- 3. a ternary quasi-majority operation;
- 4. a k-ary quasi-semiprojection for some $3 \le k \le 2r s$, where r is the number of G-orbitals (orbits under the componentwise action of G on pairs) and s is the number of G-orbits.

2 Minimal operations over permutation groups

We classify minimal operations above $\overline{\langle G \rangle}$ for $G \frown B$ an arbitrary non-trivial permutation group.

Main Theorem 10 (Minimal operations over permutation groups [2]). Let $G \sim B$ be a non-trivial permutation group with s many orbits (where s is possibly infinite). Let f be a minimal operation above $\overline{\langle G \rangle}$. Then, f is of one of the following types:

- 1. a unary operation;
- 2. *a binary operation;*
- 3. a ternary quasi-minority operation of the form αq for $\alpha \in G,$ where
 - *G* is a Boolean group acting freely on *B*;
 - $s = 2^n$ for some $n \in \mathbb{N}$, or is infinite;
 - the operation ${\mathfrak q}$ is a G-invariant Boolean Steiner 3-quasigroup.
- 4. *a k-ary orbit-semiprojection for* $3 \le k \le s$.

Remark 11. Quasi-majorities do not appear!

Minimal quasi-minorites almost never occur and are completely understood (Theorem 15);

We specify the behaviour of quasi-semiprojections on the orbits and bound their arity by the number of orbits rather than the number of orbitals.

Definition 12. $G \cap B$ is **free** if the only group element fixing any element of *B* is the identity (i.e., ga = a implies g = 1).

Definition 13. Let $G \cap B$. The *k*-ary operation *f* on *B* is an **orbit-semiprojection** if there is $i \in \{1, ..., k\}$ and a unary operation $g \in \overline{G}$ such that for any tuple $(a_1, ..., a_k)$ where at least two of the a_j lie in the same *G*-orbit,

$$f(a_1,\ldots,a_k)=g(a_i).$$

Definition 14. A *G*-invariant Boolean Steiner 3-quasigroup is a symmetric ternary minority operation q also satisfying the following conditions:

$$\mathfrak{q}(x,y,\mathfrak{q}(x,y,z)) \approx z$$
; (SQS)

$$q(x, y, q(z, y, w)) \approx q(x, z, w);$$
 (Bool

for all
$$\alpha, \beta, \gamma \in G$$
, $\mathfrak{q}(\alpha x, \beta y, \gamma z) \approx \alpha \beta \gamma \mathfrak{q}(x, y, z)$. (Inv

Theorem 15 (Description of minimal minorities [2]). *Let* $G \curvearrowright B$ *be a Boolean group acting freely on B with s many orbits.*

- There is a G-invariant Boolean Steiner 3-quasigroups if and only if $s = 2^n$ for some $n \in \mathbb{N}$, or is infinite;
- All G-invariant Boolean Steiner 3-quasigroups are minimal above $\overline{\langle G \rangle}$;
- For $s = 2^n$, the number of G-invariant Boolean Steiner 3-quasigroups is 1 for n = 0, and for $n \ge 1$ it is

$$\frac{(2^n-1)!|G|^{(2^n-n-1)}}{\prod_{k=0}^{n-1}(2^n-2^k)} \ .$$

Theorem 16 (Pálfy's Theorem for orbit-semiprojections [2]). Let $G \curvearrowright B$ with smany orbits and B finite or of the form $\operatorname{Aut}(\mathbb{B}) \curvearrowright B$ for \mathbb{B} ω -categorical in a finite relational language. Then, for all $2 \le k \le s$, there is a k-ary orbit-semiprojection minimal above $\overline{\langle G \rangle}$.

Our proof strategy for the main theorem: first classify almost minimal operations above $\overline{\langle G \rangle}$.

We use a weak version of Theorem 8 for almost minimal operations above a monoid (implicit in [1]) and show that certain behaviours cannot be witnessed by almost minimal operations since they give rise to non-injective unary operations.

Theorem 17 (Three types theorem [2]). Let $G \curvearrowright B$ be such that G is not a Boolean group acting freely on B. Let s be the (possibly infinite) number of orbits of G on B. Let f be an **almost minimal operation** above $\overline{\langle G \rangle}$. Then, f is of one of the following types:

- 1. a unary operation;
- 2. *a binary operation;*
- *3. a k*-ary orbit-semiprojection for $3 \le k \le s$.

References

- [1] Manuel Bodirsky and Hubie Chen. "Oligomorphic clones". In: <u>Algebra Universalis</u> 57 (2007), pp. 109–125.
- [2] Paolo Marimon and Michael Pinsker. Minimal operations over permutation groups. 2024. arXiv: 2410.22060 [math.RA]. URL: https://arxiv.org/abs/2410.22060.
- [3] Ivo G Rosenberg. "Minimal clones I: the five types". In: Lectures in universal algebra. Elsevier, 1986, pp. 405–427.