Extra exercises are marked with a $\star\star$. I DO <u>NOT</u> EXPECT YOU TO ANSWER THEM. I hope they can bring you joy.

Definition 1. Let $(A_i | i \in I)$ be a family of \mathcal{L} -structures, and let \mathcal{F} be an ultrafilter on I. Let \sim be the equivalence relation on $\prod_{i \in I} A_i$, where for $(a_i)_{i \in I}, (b_i)_{i \in I} \in \prod_{i \in I} A_i$ we have that

$$(a_i)_{i\in I} \sim (b_i)_{i\in I}$$
 if and only if $\{i \in I \mid a_i = b_i\} \in \mathcal{F}$.

We define the **ultraproduct** $\mathcal{U} := \prod_{i \in I} \mathcal{A}_i / \mathcal{F}$ as follows:

- The domain *U* of *U* is the set of all equivalence classes $(\prod_{i \in I} A_i) / _{\sim}$;
- For *c* a constant \mathcal{L} -symbol, $c^{\mathcal{U}} := [(c^{\mathcal{A}_i})_{i \in I}]_{\sim}$;
- For *R* an *n*-ary relation symbol in \mathcal{L} , and $[(a_i^1)_{i \in I}]_{\sim}, \ldots, [(a_i^n)_{i \in I}]_{\sim} \in U$,

 $R^{\mathcal{U}}([(a_i^1)_{i\in I}]_{\sim},\ldots,[(a_i^n)_{i\in I}]_{\sim})$ if and only if $\{i\in I\mid R^{\mathcal{A}_i}(a_i^1,\ldots,a_i^n)\}\in\mathcal{F}$.

• For *f* an *n*-ary function symbol in \mathcal{L} and $[(a_i^1)_{i \in I}]_{\sim}, \ldots, [(a_i^n)_{i \in I}]_{\sim} \in U$,

$$f^{\mathcal{U}}([(a_i^1)_{i\in I}]_{\sim},\ldots,[(a_i^n)_{i\in I}]_{\sim}):=[(f^{\mathcal{A}_i}(a_i^1,\ldots,a_i^n))_{i\in I}]_{\sim}.$$

EXERCISE 1. Show that \mathcal{U} is well-defined.

EXERCISE 2. Prove Łoś' Theorem:

For any \mathcal{L} -formula, $\phi(x_1, \ldots, x_n)$ and any $[(a_i^1)_{i \in I}]_{\sim}, \ldots, [(a_i^n)_{i \in I}]_{\sim} \in U$,

$$\mathcal{U} \models \phi([(a_i^1)_{i \in I}]_{\sim}, \dots, [(a_i^n)_{i \in I}]_{\sim})$$
 if and only if $\{i \in I \mid \mathcal{A}_i \models \phi(a_i^1, \dots, a_i^n)\} \in \mathcal{F}$.

EXERCISE 3. Deduce the compactness theorem from Łoś' Theorem. That is, show that a theory *T* is consistent (i.e. it has a model) if and only if every finite subset $S \subseteq T$ is consistent.

Definition 2. An \mathcal{L} -structure \mathcal{M} is **pseudofinite** if for every \mathcal{L} -sentence σ such that $\mathcal{M} \models \sigma$ there is a finite \mathcal{L} -structure \mathcal{M}_0 such that $\mathcal{M}_0 \models \sigma$.

** **EXERCISE 4.** Show that an \mathcal{L} -structure \mathcal{M} is pseudofinite if and only if it is elementarily equivalent to an ultraproduct of finite \mathcal{L} -structures, i.e. there is an ultraproduct \mathcal{U} of finite \mathcal{L} -structures such that $\text{Th}(\mathcal{M}) = \text{Th}(\mathcal{U})$.

EXERCISE 5. A graph is a structure with a binary relation which is symmetric and irreflexive. A graph is **connected** if there is a (finite) path between any two of its vertices. Prove that the class of connected graphs is not **elementary**, that is, there is no first order theory whose models are exactly the connected graphs.

Definition 3. A **well-order** is a linear order such that every non-empty set has a least element.

EXERCISE 6. Let $\phi(x, y)$ be an \mathcal{L} -formula. Suppose that \mathcal{A} is an infinite \mathcal{L} -structure where $\phi(A^2)$ forms a well-order on A. Show that there is an \mathcal{L} -structure B with the same theory as A for which $\phi(B^2)$ is a linear ordering which is not a well-order.

** **EXERCISE 7.** Let *G* be an infinite simple group (i.e. the only normal subgroups of *G* are the trivial group and itself). Show that for every infinite cardinality $\lambda \leq |G|$, *G* has a simple subgroup of cardinality λ .

1 Hints

Spoilers ahead! Keep in mind that for some of the exercises it should be sufficient for you to remind yourself of some of the relevant definitions and theorems.

- EXERCISES 2, 3, 4: For the exercises on ultraproducts, you might have to remind yourself of some of the basic properties of ultrafilters. In particular, we say that $\mathcal{A} \subseteq \mathcal{P}(I)$ has the **finite intersection property** if any collection of finitely many sets from \mathcal{A} has non-empty intersection. Any $\mathcal{A} \subseteq \mathcal{P}(I)$ with the **finite intersection property** is contained in a filter \mathcal{F} on *I*. Then, you just need to remember the Ultrafilter Lemma: any filter on *I* extends to an ultrafilter on *I*.
- EXERCISE 6: Adapt the proof of the upwards Löwenheim-Skolem Theorem.
- EXERCISE 7: Apply the downwards Löwenheim-Skolem Theorem. Recall the definition of **normal subgroup generated by** a set of elements in a group:

Definition 4. Let $A \subseteq G$. The **normal subgroup generated** by A in G is the smallest normal subgroup of G containing A. It is given by the subgroup of G generated by

$$\bigcup_{g\in G} gAg^{-1}.$$

If you struggle with proving this result, try and prove the following slightly easier result:

EXERCISE 7': Let *G* be an infinite connected graph. Show that for every infinite cardinality $\lambda \leq |G|$, *G* has a connected subgraph *H* elementarily equivalent to *G* and of cardinality λ .

You know that being connected is not an elementary property. So how are you going to get that *H* is still connected?