
Model Theory Problem Sheet 4

Extra exercises are marked with a ⋆⋆. I DO NOT EXPECT YOU TO ANSWER THEM. I
hope they can bring you joy.

Definition 1. Let Lring be the language of rings. For p prime, we denote by ACFp the
theory of algebraically closed fields of characteristic p. Similarly, ACF0 denotes the theory
of algebraically closed fields of characteristic 0.

EXERCISE 1. Let φ be an Lring-sentence. Prove that the following are equivalent:

• ACF0 � φ;

• for all sufficiently large primes p, ACFp � φ;

• there are arbitrarily large primes p such that ACFp � φ.

Deduce that ACF0 is not finitely axiomatizable.

Definition 2. Let K be a field. We say that a map f : Kn → Kn is a polynomial map if it is
of the form

f (x1, . . . , xn) = (p1(x1, . . . , xn), . . . , pn(x1, . . . , xn)),

where pi ∈ K[x1, . . . , xn] for each i ≤ n.

The following theorem was first proven using model theory (indeed, you only need Exer-
cise 1 and the fact that ACFp is complete for each prime p):

⋆⋆ EXERCISE 2. Prove the Ax-Grothendieck Theorem: let f : Cn → Cn be a polynomial
map. If f is one to one, then f is onto. [Hint: for d ∈ N, there is an Lring-sentence Φd

expressing that for all polynomial maps f such that every polynomial pi in it has degree
≤ d, if f is one-to-one, then it is onto.]

Definition 3. Let Lgr consist of a single binary relation E and Tgr be the theory of undirected
graphs without loops. For n, m ∈ N, the Alice restaurant axiom An,m is the following Lgr

sentence:

∀x1, . . . , xn, y1, . . . , ym

(

∧

i,j

xi 6= yj →
(

∃z
∧

i≤n

E(z, xi) ∧
∧

j≤m

(¬E(z, yj) ∧ z 6= yj)
)

)

.

Let Trg be obtained by Tgr ∪ {An,m|n, m ∈ N}. We call Trg the theory of the random graph.

Definition 4. We say that an L-formula φ is quantifier-free if it does not contain any quan-
tifier.

Definition 5. We say that an L-theory T has quantifier elimination if every L-sentence
is equivalent, modulo T, to a quantifier-free L-formula. That is, for every L-formula φ(x)
with free variables x, there is a quantifier-free L-formula ψ(x) such that

T ⊢ ∀x(φ(x) ↔ ψ(x)) .

EXERCISE 3. Show that the theory of the random graph is ω-categorical. Deduce that it is
complete. Further prove that the theory of the random graph has quantifier elimination.

The following is really an exercise in probability, but it is the reason for the name of the
random graph.

⋆⋆ EXERCISE 4. Let 0 < p < 1. Take n vertices and for each pair of distinct vertices choose
independently at random with probability p whether they form an edge. Let G(n, p) be the
graph obtained in this manner. Show that for each k, l ∈ N,

P(G(n, p) � Ak,l) → 1 as n → ∞.

Prove that for any Lgr-sentence φ, Trg � φ if and only if

P(G(n, p) � φ) → 1 as n → ∞.
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EXERCISE 5. Show that the following theories do NOT have quantifier elimination:

• Th(N;<);

• Th(Z;+);

• Th(R; 0, 1,+, ·,−);

• Th(Q; 0, 1,+, ·,−,<).

Hints

Spoilers ahead!

• EXERCISE 2: Let F
alg
p be the algebraic closure of the p element field. Try and prove

first that if a polynomial map f : (F
alg
p )n → (F

alg
p )n is one-to-one, then it is onto. Feel

free to use other facts about. You may use that

F
alg
p =

⋃

k

Fpk .

• EXERCISE 3: This is what people call the "back & forth method". Think about how
you would extend a partial isomorphism between two models of the random graph
one element at a time. This idea also helps with quantifier elimination;

• EXERCISE 5: For the last part it might be helpful to know that Th(R; 0, 1,+, ·,−,<)
has quantifier elimination and this implies that Th(R; 0, 1,+, ·,−,<) is o-minimal,
i.e. every definable subset of R is a finite union of intervals and points. Can you see
why this is the case given quantifier elimination?
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