Extra exercises are marked with a ******. I DO <u>NOT</u> EXPECT YOU TO ANSWER THEM. I hope they can bring you joy.

Fact 1. Let G and H be groups. Then, $Aut(G \times H)$ has a subgroup isomorphic to $Aut(G) \times Aut(H)$.

EXERCISE 1. Let *G* and *H* be countable ω -categorical groups. Show that $G \times H$ is still ω -categorical.

Fact 2. An Abelian group of finite exponent is a direct sum of finite cyclic groups.

EXERCISE 2. Let A_n be the class of finite Abelian groups of exponent dividing n (that is, $A \in A_n$ if and only if nA = 0). Show that A_n is a Fraïssé class and that its Fraïssé limit is isomorphic to $\mathbb{Z}_n^{(\omega)}$, i.e. the direct sum of countably many copies of the cyclic group of order n. [Hint: for the amalgamation property: given $f_i : A \to B_i$ in A_n . Let $D = B_0 \oplus B_1$ and $E := \{(f_0(a), -f_1(a)) | a \in A\}$ and consider D/E as the amalgam.]

Given $n \in \mathbb{N}$, note that the number of isomorphism types of *n*-generated substructures in \mathcal{A}_n is finite. Deduce that $\mathbb{Z}_n^{(\omega)}$ is ω -categorical.

Deduce that an infinite Abelian group is ω -categorical if and only if it has finite exponent.

Fact 3 (Neumann's Lemma). *Suppose G is a group acting on a set X and all G-orbits on X are infinite. Let* $B, C \subseteq X$ *be finite. Then there is some* $g \in G$ *such that* $B \cap gC = \emptyset$.

Definition 4. We say that an \mathcal{L} -structure M has trivial algebraic closure if acl(A) = A for all finite sets.

EXERCISE 3. Let C be a Fraïssé class in a finite relational language and write M for the resulting Fraïssé limit. Then, M has trivial algebraic closure if and only if C has the **strong amalgamation property**:

• For $A, B_0, B_1 \in C$ and embeddings $f_i : A \to B_i$ for $i \in \{0, 1\}$ there is a $C \in C$ and embeddings $g_i : B_i \to C$ for $i \in \{0, 1\}$ such that $g_0 \circ f_0 = g_1 \circ f_1$ and $g_0(A_0) \cap g_1(A_1) = g_0(f_0(A))$.

[Hint: For the ' \Leftarrow ' implication, consider a finite set $A \subseteq M$ and $b \notin A$. You need to show that the Aut(M/A)-orbit of *b* is infinite, where Aut(M/A) is the stabilizer of *A*. For the ' \Rightarrow ' implication you need Neumann's Lemma.]

Give an example of a countable homogeneous relational structure which does not have trivial algebraic closure.

EXERCISE 4. Prove Ramsey's Theorem:

Theorem 5 (Ramsey's Theorem, infinite version). Let A be an infinite set and $n \in \omega$. Partition the set of n-element subsets $[A]^n$ into subsets C_1, \ldots, C_k . Then, there is an infinite subset of A whose n-element subsets all belong to the same subset C_i .

[Hint: Prove the theorem first for n = 1, 2 and then think of how the induction works]

Definition 6. Let G act on X transitively. We say that the action of G on X is **primitive** if there are no non-trivial G-invariant equivalence relations on X. Otherwise, we say the action is **imprimitive**.

An **orbital** $\hat{\Delta}$ of *G* is an orbit of *G* on X^2 . For each $a \in X$, the set $\{(a, a) | a \in X\}$ is called the **diagonal orbital**. For an orbital Δ of *G* we define the **orbital graph** of *G* with respect to Δ to be the directed graph that has *X* as vertex set and Δ as its set of directed edges.

Fact 7 (Higman's Theorem). *Let G act transitively on X. Then, the action of G on X is primitive if and only if for every orbital* Δ *of G except for the diagonal orbital, the orbital graph of* Δ *is connected.*

**** EXERCISE 5.** Show that if a countable homogeneous graph is disconnected, then each connected component must be a complete graph.

Classify the countably infinite homogeneous graphs with imprimitive automorphism group (without using the Lachlan & Woodrow classification of homogeneous graphs).