Extra exercises are marked with a $\star\star$. I DO <u>NOT</u> EXPECT YOU TO ANSWER THEM. I hope they can bring you joy.

Throughout this problem sheet we work with countable theories.

EXERCISE 1. Show that a theory is κ -stable if and only if it is κ -stable for 1-types, i.e.

 $|A| \le \kappa \Rightarrow |S_1(A)| \le \kappa.$

EXERCISE 2. Show that if a theory is κ -stable, then it is logically equivalent to a theory of cardinality $\leq \kappa$.

Definition 1. Let \mathcal{M} be an \mathcal{L} -structure. An infinite $\mathcal{L}(M)$ -definable set D defined by a formula $\phi(x, a)$ is **minimal** if any $\mathcal{L}(M)$ -definable $Y \subseteq D$ is either finite or cofinite in D.

EXERCISE 3. Let *T* be totally transcendental. Show that for $\mathcal{M} \models T$, there is a minimal formula in \mathcal{M} .

EXERCISE 4. Are the following theories ω -stable? If they are, are they \aleph_1 -categorical? You may use knowedge from previous exercises.

- the theory of the random graph;
- the theory of an equivalence relation with two infinite classes;
- the theory of an infinite dimensional vector space over the finite field \mathbb{F}_q ;
- the theory of (\mathbb{Z}, s) , where *s* is the successor function $x \mapsto x + 1$;
- the theory of dense linear orders;
- ** the theory in the language with a binary symmetric relation of an infinite tree for which every vertex is infinitely branching.