Extra exercises are marked with a $\star\star$. I DO <u>NOT</u> EXPECT YOU TO ANSWER THEM. I hope they can bring you joy.

Definition 1. A class C of \mathcal{L} -structures is said to be **finitely axiomatizable** if it is the class of models of an \mathcal{L} - theory consisting of finitely many \mathcal{L} -sentences.

Definition 2. Let C be a class of \mathcal{L} -structures. We say that C is an **elementary class** if there is an \mathcal{L} -theory whose models are exactly the structures in C.

EXERCISE 1. Show that a class C of \mathcal{L} -structures is finitely axiomatizable if and only if both C and its complement (i.e. the class of those \mathcal{L} -structures that are not in C) are elementary.

Notation 3. We write $\mathcal{A} \preceq \mathcal{M}$ to say that \mathcal{A} is elementarily embedded in \mathcal{M} .

Definition 4. Let *I* be a linearly ordered set. A family of structures $(A_i)_{i \in I}$ forms an **elementary chain** if $A_i \leq A_j$ for i < j from *I*.

EXERCISE 2. Prove Tarski's Chain Lemma: let $(A_i)_{i \in I}$ be an elementary chain. Consider the structure

$$\mathcal{A} := \bigcup_{i \in I} \mathcal{A}_i.$$

Then, A is an elementary extension of each A_i .

EXERCISE 3. Let C be a class of \mathcal{L} -structures. By Th(C) we denote the common theory of all \mathcal{L} -structures in C. That is,

$$\mathrm{Th}(\mathcal{C}) := \{ \phi \in \mathrm{Sen}(\mathcal{L}) | \mathcal{A} \vDash \phi \text{ for all } \mathcal{A} \in \mathcal{C} \}.$$

- 1. Show that an \mathcal{L} -structure \mathcal{M} is a model of $\text{Th}(\mathcal{C})$ if and only if it is elementarily equivalent to an ultraproduct of elements of \mathcal{C} ;
- 2. Show that C is an elementary class if and only if C is closed under ultraproducts and elementary equivalence.

EXERCISE 4. Let $\mathcal{L}_{or} = (<, +, -, \cdot, 0, 1)$ be the language of ordered rings. Let $\mathcal{L}_{orf} = \mathcal{L}_{or} \cup \{f\}$, where *f* is a unary function symbol. Let $\mathcal{R} := (\mathbb{R}; <, +, -, \cdot, 0, 1, f)$ be an \mathcal{L}_{orf} -structure where $(\mathbb{R}; <, +, -, \cdot, 0, 1)$ is the ordered field of real numbers and $f^{\mathcal{R}} : \mathbb{R} \to \mathbb{R}$ is a unary function with $f^{\mathcal{R}}(0) = 0$.

1. Show there is an elementary extension $\mathcal{A} \succeq \mathcal{R}$ containing an infinitesimal, that is, an element $\epsilon \neq 0$ such that for all $n \in \mathbb{N}$,

$$\mathcal{A} \vDash n|\epsilon| < 1;$$

- 2. Assume that $f^{\mathcal{R}}$ is continuous at 0. Show that for any elementary extension $\mathcal{A} \succeq \mathcal{R}$ and any infinitesimal $\epsilon \in A$, $f^{\mathcal{A}}(\epsilon)$ is also infinitesimal;
- 3. Suppose that for all $\mathcal{A} \succeq \mathcal{R}$ and infinitesimal $\epsilon \in \mathcal{A}$, $f^{\mathcal{A}}(\epsilon)$ is also infinitesimal. Show that $f^{\mathcal{R}}$ is continuous at 0.

Definition 5. We say that \mathcal{M} is ω -saturated if all types in finitely many variables over finite subsets of \mathcal{M} are realised in \mathcal{M} .

** **EXERCISE 5.** Let $\mathcal{L}_{ar} := (+, \times)$ be the language of arithmetics. Let $(\mathbb{N}; +, \times)$ be the natural numbers, where each \mathcal{L}_{ar} -symbol is given its standard interpretation. We call a model of Th(\mathbb{N}) which is not isomorphic to \mathbb{N} a **non-standard model of arithmetics**.

- 1. Prove that there is a countable non-standard model of arithmetics $\mathcal{N} \succeq \mathbb{N}$ containing an element n^* which has infinitely many distinct prime factors;
- 2. Show that there are uncountably many non-isomorphic countable models of $\text{Th}(\mathbb{N})$ [Hint: the idea from the first part of this question should help!]. Deduce there is no countable ω -saturated model for $\text{Th}(\mathbb{N})$.

Notation 6. Let *a*, *b* be *n*-tuples from \mathcal{M} and $C \subseteq \mathcal{M}$. We write $a \equiv_C b$ to say that the type of *a* over *C* is the same as the type of *b* over *C*, that is tp(a/C) = tp(b/C). We write $a \equiv b$ to say that *a* and *b* have the same type over \emptyset .

** **EXERCISE 6.** Let \mathcal{L} be a relational language. Let \mathcal{M} be an \mathcal{L} -structure. Let a, b in \mathcal{M} be such that $a \equiv b$. We want to prove that there is $\mathcal{N} \succeq \mathcal{M}$ and an automorphism σ of \mathcal{N} such that $\sigma a = b$. This exercise guides you through a proof of this:

1. Show that it is sufficient to prove that for \mathcal{L} a *finite* relational language and \mathcal{M} a *countable* \mathcal{L} -structure with $a, b \in M$ such that $a \equiv b$ there is *countable* $\mathcal{N} \succeq \mathcal{M}$ and an automorphism σ of \mathcal{N} such that $\sigma a = b$. Hence, we will assume this in the following tasks;

Consider the language \mathcal{L}' consisting of $\mathcal{L}(M)$, that is, \mathcal{L} together with constant symbols for all elements of M and 2n-ary relations $E_n(x_1, \ldots, x_n, y_1, \ldots, y_n)$ for each $n \in \mathbb{N}$. Let \mathcal{M}_M be the $\mathcal{L}(M)$ -expansion of M, where each element of M is named by a constant. Let $\text{Th}(M_M)$ be the theory of \mathcal{M}_M . Let Γ be the \mathcal{L}' -theory consisting of $\text{Th}(M_M)$ adjoined with axioms saying that each E_n is an equivalence relation on n-tuples and

$$\forall \overline{x} \forall \overline{y} \forall u \exists v (E_n(\overline{x}, \overline{y}) \to E_{n+1}(\overline{x}u, \overline{y}v)) \tag{1}$$

$$\forall \overline{x} \forall \overline{y} (E_n(\overline{x}, \overline{y}) \to (\phi(\overline{x}, a) \leftrightarrow \phi(\overline{y}, b))$$
(2)

for each *n* and each atomic \mathcal{L} -formula $\phi(\overline{x}, \overline{z})$.

- 2. Show that if Γ is satisfiable, then there is a countable model $\mathcal{N} \succeq \mathcal{M}$ and an automorphism σ of \mathcal{N} such that $\sigma a = b$;
- 3. Show that Γ is finitely satisfiable. [Hint: start with $\Gamma' \subseteq \Gamma$ containing $\operatorname{Th}(M)$ and only mentioning E_1 and E_2 . Try and interpret E_2 as the equivalence relation holding for all pairs which have the same quantifier-free type. How should you interpret E_1 ? How can the assumption that \mathcal{L} is finite help you?]