Extra exercises are marked with a $\star\star$. I DO <u>NOT</u> EXPECT YOU TO ANSWER THEM. I hope they can bring you joy.

Definition 1. Let \mathcal{M} be a \mathcal{L} -structure and $A \subset \mathcal{M}$. The **substructure of** \mathcal{M} **generated by** A is the smallest \mathcal{L} -substructure of \mathcal{M} containing A. That is, the substructure of \mathcal{M} with universe

 $\bigcap \{ N | A \subseteq N, \mathcal{N} \subseteq \mathcal{M} \text{ is an } \mathcal{L}\text{-structure} \}.$

We say that a substructure \mathcal{N} of \mathcal{M} is **finitely generated** if it is generated by a finite set.

Definition 2. Let \mathcal{P} be a property of \mathcal{L} -structures. We say that \mathcal{M} has \mathcal{P} **locally** if \mathcal{P} holds for all finitely generated substructures of \mathcal{M} .

EXERCISE 1. Let \mathcal{M} be an \mathcal{L} -structure and \mathcal{C} an elementary class of \mathcal{L} -structures. Show that \mathcal{M} is embeddable in a member of \mathcal{C} if and only if \mathcal{M} is locally embeddable in members of \mathcal{C} .

Deduce that every linear ordering can be embedded in a dense linear order.

Definition 3. An Abelian group (G; +, -, 0) is **torsion-free** if for all $n \in \mathbb{N}$, the only element *x* satisfying nx = 0 is x = 0.

An Abelian group is **divisible** if for all *n* and all $g \in G$ there is $y \in G$ such that ny = g. We write DAG for the theory of non-trivial torsion-free divisible Abelian groups.

EXERCISE 2. Show that DAG_{\forall} is the theory of torsion-free Abelian groups. [You may use EXERCISE 1 and basic facts about Abelian groups.]

EXERCISE 3. Show that the following definitions of ω -saturation are equivalent:

- for all $A \subset M$ finite and $p \in S_1(A)$, *p* is realised in *M*;
- for all $k \in \mathbb{N}$, $A \subset M$ finite and $p \in S_k(A)$, p is realised in M.

EXERCISE 4. Show that if two countable ω -saturated structures are elementarily equivalent then they are isomorphic.

Definition 4. We say that an \mathcal{L} -theory *T* is **strongly minimal** if for any $\mathcal{M} \models T$, every definable subset (with parameters) of *M* is either finite or cofinite.

EXERCISE 5. Let $(\mathbb{Z}; s)$ be the integers with a function symbol *s* denoting the successor function s(x) = x + 1. Prove that $\text{Th}(\mathbb{Z}; s)$ has quantifier elimination. Deduce that $\text{Th}(\mathbb{Z}; s)$ is strongly minimal.

** **EXERCISE 6.** Show that every definable subset (with parameters) of $(\mathbb{N}; <)$ is either finite or cofinite but that $\operatorname{Th}(\mathbb{N}; <)$ is not strongly minimal. [Hint: you know that $\operatorname{Th}(\mathbb{N}; <)$ does not have quantifier elimination, but it might be helpful to think about an expansion of $(\mathbb{N}; <)$ to some language for which quantifier elimination holds.]