Definition 1. Let *K* be any field. We consider *K*-vector spaces in the language $\{+(\lambda_k)_{k\in K}, 0\}$. Let VEC(*K*) denote the theory of infinite vector spaces over *K*.

EXERCISE 1. Show that $VEC(K)$ is categorical in every infinite power $\kappa > |K|$ and deduce that $VEC(K)$ is complete. Prove that $VEC(K)$ has quantifier elimination.

In the exercise below you may use the following theorems:

Theorem 2 (Artin-Schreier)**.** *Let* (*F*, <) *be an ordered field (i.e. F is a field and* < *is an order on the domain of F). The following are equivalent:*

- *1. F is real closed, i.e. every positive element is a square;*
- 2. $F(i)$ *is algebraically closed (where* $i = \sqrt{-1}$ *)*;
- *3.* (intermediate value theorem) If $p(X) \in F[X]$ and $a, b \in F$ are such that $a < b$ and $p(a)p(b) < 0$, then there is $c \in F$ such that $a < c < b$ and $p(c) = 0$;
- *4. For any a* ∈ *F either a or* −*a is a square and every polynomial of odd degree has a root.*

Definition 3. We say that the ordered field $(R, <)$ is the **real closure** of the subfield $(K, <)$ if it is real closed and algebraic over *K*.

Theorem 4. *Every ordered field* (*K*, <) *has a real closure and this is uniquely determined up to isomorphism over* $(K, <)$ *.*

Definition 5. The theory of **real closed ordered fields** ROCF in the language of ordered fields consists of the axioms of the theory of fields and axioms expressing the intermediate value theorem for polynomials (Theorem [2](#page-0-0)[.3\)](#page-0-1).

EXERCISE 2. Show that ROCF has quantifier elimination.

Definition 6. We say that a type *p* for a theory *T* is **principal** if there is a formula $\phi(\bar{x}) \in p$ such that $T \vDash \exists \overline{x} \phi(\overline{x})$ and for all $\psi(\overline{x}) \in p$ we have

$$
T \vDash \forall \overline{x}(\phi(\overline{x}) \to \psi(\overline{x})).
$$

Note that principal types are realised in every model of *T*. We call $M \models T$ an **atomic model of** *T* if it only realises the principal types of *T*.

Below, assume that *T* is countable.

EXERCISE 3. Show that if M and N are countable, atomic and elementary equivalent then they are isomorphic.

EXERCISE 4. Suppose that M is a countable atomic model of *T*. Show that M can be elementarily embedded into any model of *T*.