Extra exercises are marked with a $\star\star$. I DO <u>NOT</u> EXPECT YOU TO ANSWER THEM. I hope they can bring you joy.

Definition 1. An *L*-formula is **positive quantifier-free** if it is quantifier-free and containing no negations.

EXERCISE 1. Let *T* be a complete \mathcal{L} -theory and $\phi(\overline{x})$ be an \mathcal{L} -formula such that $T \models \exists \overline{x} \phi(\overline{x})$. Prove that the following are equivalent:

1. there is positive quantifier-free $\psi(\overline{x})$ such that

 $T \vDash \forall \overline{x}(\phi(\overline{x}) \leftrightarrow \psi(\overline{x}));$

2. for all $\mathcal{M}, \mathcal{N} \models T$ and $A \subseteq M$, if $f : A \to N$ is a homomorphism, $\overline{a} \in A$ and $\mathcal{M} \models \phi(\overline{a})$, then, $\mathcal{N} \models \phi(f(\overline{a}))$.

Definition 2. A **Boolean algebra** is a structure $(B; , \land, \lor, \neg, 0, 1)$, where \land, \lor are binary operations, \neg is unary, and 0 and 1 are constants naming distinct elements satisfying the following universal axioms (for all *x*, *y*, *z*):

- (de Morgan's laws) $\neg(\neg x) = x$, $\neg(x \land y) = \neg x \lor \neg y$, $\neg(x \lor y) = \neg x \land \neg y$;
- (associativity of \land): $(x \land y) \land z = x \land (y \land z)$;
- (associativity of \lor): $(x \lor y) \lor z = x \lor (y \lor z)$;
- (distributivity of \land over \lor): $x \land (y \lor z) = (x \land y) \lor (x \land z)$;
- (distributivity of \lor over \land): $x \lor (y \land z) = (x \lor y) \land (x \lor z)$;
- (commutativity) $x \wedge y = y \wedge x$, $x \vee y = y \vee x$;
- $x \wedge \neg x = 0$, $x \vee \neg x = 1$;
- $x \land 0 = 0, x \lor 0 = x, x \land 1 = x.x \lor 1 = 1;$
- $0 \neq 1, \neg 0 = 1, \neg 1 = 0.$

Definition 3. In a Boolean algebra, the relation $x \land y = x$ defines a partial order which we denote by $x \le y$. An atom in a Boolean algebra is a non-zero element *a* such that the only elements $\le a$ are 0 and *a*. We say that *B* is **atomless** if it has no atoms.

EXERCISE 2. Note that any atomless Boolean algebra must be infinite. Prove that the theory of atomless Boolean algebras has quantifier elimination and is ω -categorical (and thus complete).

EXERCISE 3. Consider the theory $T = \text{Th}(\mathbb{N}; s)$ where *s* is the successor operation s(x) = x + 1. Show that this theory is categorical in all uncountable cardinals.

EXERCISE 4. Let \mathcal{L}_n be the language with *n*-many unary predicate symbols P_1, \ldots, P_n . Let T_n be the theory asserting each P_i is infinite, that they are all disjoint and there are infinitely many elements not in any P_i for $i \leq n$.

- Show T_n is ω -categorical and complete;
- How many models of cardinality \aleph_1 does T_2 have up to isomorphism?
- Show that $T = \bigcup_{n \in \mathbb{N}} T_n$ is a complete theory. How many countable models does *T* have up to isomorphism?

$$D(xy) = xD(y) + yD(x).$$

A **differential ring** is a ring equipped with a derivation. Given a derivation $D_0 : R \to R$, we call the **ring of differential polynomials** the differential ring

$$R\{X\} := R[X, X^{(1)}, X^{(2)}, X^{(3)}, \dots],$$

with derivation *D* extending D_0 by setting $D(X^{(n)}) = X^{(n+1)}$.

Definition 5. An ideal $I \subseteq R\{X\}$ is a **differential ideal** if for all $f \in I$, $D(f) \in I$.

Definition 6. If $f(X) \in R\{X\} \setminus R$, the **order** of *f* is the largest *n* such that $X^{(n)}$ occurs in *f*. We can write

$$f(X) = \sum_{i=0}^{m} g_i(X, X^{(1)}, \dots, X^{(n-1)})(X^{(n)})^i,$$

for $g_i \in R[X, X^{(1)}, ..., X^{(n-1)}]$ and $g_m \neq 0$. We call *m* the **degree** of *f*. We write $g \leq f$ if either the order of *g* is strictly less than the order of *f* or if the orders are the same but *g* has lower degree than *f*.

Fact 7. Let *K* be a differential field of characteristic zero (in the sense that the underlying field has characteristic zero). Let *I* be a non-zero prime differential ideal. Then, there is $f \in I$ irreducible such that for all $g \in I$ with $g \neq 0$, $g \leq f$.

Definition 8. A differential field *K* (of characteristic zero) is called **differentially closed** if for any non-constant differential polynomials *f* and *g* where the order of *g* is less than the order of *f* there is an *x* such that f(x) = 0 and $g(x) \neq 0$.

Note that the theory of differentially closed fields of characteristic zero is axiomatisable. We call it DCF_0 .

Fact 9. Every differential field k has an extension K which is differentially closed.

EXERCISE 5. Prove that DCF₀ has quantifier elimination and is complete.

** **EXERCISE 6.** Prove the **differential Nullstellensatz** (everything is in characteristic 0): Suppose that *k* is a differential field and Σ is a finite system of differential equations and inequations over *k* which has a solution in some $l \supseteq k$. Then, Σ has a solution in any differentially closed $K \supseteq k$.