Extra exercises are marked with a $\star\star$. I DO <u>NOT</u> EXPECT YOU TO ANSWER THEM. I hope they can bring you joy.

EXERCISE 1. Show that the countability of the language in the Omitting Types Theorem is necessary. That is, there is a theory *T* in an uncountable language with a non-isolated type realised in all models of *T*.

Definition 1. Let *G* be a permutation group acting on a countable set *B*. For each $n \in \mathbb{N}$, *G* also acts naturally on B^n by

$$g \cdot (b_1,\ldots,b_n) = (g \cdot b_1,\ldots,g \cdot b_n).$$

We say that the action of *G* on *B* is **oligomorphic** if for each $n \in \mathbb{N}$ the action of *G* on B^n has finitely many orbits.

Recall that for M a structure, Aut(M) denotes the automorphism group of M.

EXERCISE 2. Prove the following are equivalent of a countable complete theory *T* with infinite models:

- *T* is *ω*-categorical;
- for all countable $\mathcal{M} \models T$, $\operatorname{Aut}(M) \frown M$ is oligomorphic;
- for some countable $\mathcal{M} \vDash T$, $\operatorname{Aut}(M) \curvearrowright M$ is oligomorphic.

EXERCISE 3. Let \mathcal{M} be an infinite \mathcal{L} -structure and $A = \{a_1, \ldots, a_n\} \subset \mathcal{M}$. Show that Th($M; a_1, \ldots, a_n$) is ω -categorical if and only if Th(\mathcal{M}) is ω -categorical.

Let $A \subset M$ be finite. Show that X is an A-definable subset of M^k if and only if X is an Aut(M/A)-invariant subset of M^k , where by Aut(M/A) we denote the automorphisms of M fixing A.

Definition 2. Let $A \subseteq M$. We say that $b \in M$ is **algebraic** over A if there is a finite A-definable subset $X \subseteq M$ such that $b \in X$.

We write acl(A) for the union of finite *A*-definable subsets of *M*.

EXERCISE 4. Suppose that *M* is a model of an ω -categorical theory. Show that for each finite $A \subset M$, acl(A) is finite. Deduce that there is no ω -categorical theory extending the theory of infinite fields.