EXERCISE 1. Let \mathcal{M} be a model and $p \in S_{\phi}(\mathcal{M})$. Show that p extends uniquely to a generalised ϕ -type.

Definition 1. Let $\phi(x, y)$ be an \mathcal{L} -formula. Let $A \subseteq \mathbb{M}$. We denote by $\text{FER}_{\phi}(A)$ the collection of equivalence relations E(x, y) on \mathbb{M} with finitely many classes such that for each $a \in \mathbb{M}$ the equivalence class of a, $E(\mathbb{M}, a)$ is equivalent to a Boolean combination of ϕ -formulas over A.

Theorem 2 (Finite Equivalence Relations Theorem). *Let* $\phi(x, y)$ *be a stable. Let* p *be a generalised* ϕ *-type over* $A \subseteq \mathbb{M}$ *. Let*

 $Y := \{q(x) \in S_{\phi}(\mathbb{M}) | q(x) \text{ is an extension of } p \text{ definable over } \mathrm{acl}^{eq}(A) \}.$

Then, Y is finite, $\operatorname{Aut}(\mathbb{M}/A)$ acts transitively on Y, and there is an equivalence relation $E \in \operatorname{FER}_{\phi}(A)$ such that for all $q_1, q_2 \in Y$, $q_1 = q_2$ if and only if $q_1(x) \cup q_2(y) \vdash E(x, y)$.

EXERCISE 2. Prove the Finite Equivalence Relations Theorem.

Definition 3. Let *X* be an \emptyset -definable subset of \mathbb{M} . We say that *X* is **stably embedded** if every $\mathcal{L}(M)$ -definable $Y \subseteq X$ is $\mathcal{L}(X)$ -definable (i.e. definable already with parameters from *X*).

EXERCISE 3. Let *X* be an \emptyset -definable subset of \mathbb{M} . Show that the following are equivalent:

- *X* is stably embedded;
- Every type tp(a/X) is definable over some $C \subseteq X$;
- For every *a* there is a small (i.e. of size < $|\mathbb{M}|$) subset $C \subseteq X$ such that $tp(a/C) \vdash tp(a/X)$;
- Every automorphism of X extends to an automorphism of \mathbb{M} .

EXERCISE 4. Let *T* be stable. Let *X* be an \emptyset -definable subset of \mathbb{M} . Show that *X* is stably embedded.