Definition 1. Let $\phi(x, y)$ be an \mathcal{L} -formula. Let $A \subseteq \mathbb{M}$. We denote by $\operatorname{FER}_{\phi}(A)$ the collection of equivalence relations E(x, y) on \mathbb{M} with finitely many classes such that for each $a \in \mathbb{M}$ the equivalence class of a, $E(\mathbb{M}, a)$ is equivalent to a Boolean combination of ϕ -formulas over A.

Theorem 2 (Finite Equivalence Relations Theorem). *Let* $\phi(x, y)$ *be a stable. Let* p *be a generalised* ϕ *-type over* $A \subseteq \mathbb{M}$ *. Let*

 $Y := \{q(x) \in S_{\phi}(\mathbb{M}) | q(x) \text{ is an extension of } p \text{ definable over } acl^{eq}(A) \}.$

Then, Y is finite, Aut(\mathbb{M}/A) acts transitively on Y, and there is an equivalence relation $E \in FER_{\phi}(A)$ such that for all $q_1, q_2 \in Y$, $q_1 = q_2$ if and only if $q_1(x) \cup q_2(y) \vdash E(x, y)$.

ZOMBIE EXERCISE 1. Prove the Finite Equivalence Relations Theorem.

Definition 3. Let *X* be an \emptyset -definable subset of \mathbb{M} . We say that *X* is **stably embedded** if every $\mathcal{L}(M)$ -definable $Y \subseteq X$ is $\mathcal{L}(X)$ -definable (i.e. definable already with parameters from *X*).

ZOMBIE EXERCISE 2. Let *X* be an \emptyset -definable subset of \mathbb{M} . Show that the following are equivalent:

- *X* is stably embedded;
- Every type tp(a/X) is definable over some $C \subseteq X$;
- For every *a* there is a small (i.e. of size < $|\mathbb{M}|$) subset $C \subseteq X$ such that $tp(a/C) \vdash tp(a/X)$;
- Every automorphism of *X* extends to an automorphism of \mathbb{M} .

EXERCISE 3. Prove that $\phi(x, b)$ divides over *A* if and only if there is $(b_i)_{i < \omega}$ indiscernible over *A* with $b_0 \equiv_A b$ and $\{\phi(x, b_i) | i < k\}$ is inconsistent.

EXERCISE 4. Prove that $\phi(x, b)$ divides over *A* if and only if $\phi(x, b)$ divides over acl^{eq}(*A*).

EXERCISE 5. Prove the following

- If $p \in S_x(\mathbb{M})$ is finitely satisfiable in *A*, then *p* is Aut(\mathbb{M}/A)-invariant;
- If *p* is Aut(\mathbb{M}/A)-invariant and $(b_i)_+i < \omega$ is such that $b_i \models p_{|A(b_j|j < i)}$, then $(b_i)_{i < \omega}$ is an *A*-indiscernible sequence.

EXERCISE 6. Let $\phi(x, y)$ be stable. Let $p \in S_{\phi}(\mathbb{M})$ be definable over \mathbb{M} and consistent with a partial type $\pi(x)$ over M. Then, $\pi(x) \cup p(x)$ is finitely satisfiable in M.