EXERCISE 1. Consider Th(Q, cyc), where

 $\mathbb{Q} \vDash \operatorname{cyc}(a, b, c) \Leftrightarrow (a < b < c) \lor (b < c < a) \lor (c < a < b).$

Show that for $a \neq b$, cyc(a, x, b) divides over \emptyset . Show that x = x forks over \emptyset , but does not divide over \emptyset .

EXERCISE 2. Let $\phi(x, y)$ be stable. Show that $\phi(x, b)$ does not divide over *A* if and only if it is satisfiable in every model containing *A*.

Now, consider a stable theory *T*. Let $p \in S_x(B)$ and let $A \subseteq B$. Show that the following are equivalent:

- *p* does not fork over *A*;
- there is a global type extending p which is $acl^{eq}(A)$ -invariant;
- there is a global type extending p which is $acl^{eq}(A)$ -definable.

EXERCISE 3. Show the following are equivalent:

- tp(*a*/*Ab*) does not divide over *A*;
- For every infinite *A*-indiscernible sequence *I* such that *b* ∈ *I*, there is some *a*' ≡_{*Ab*} *a* such that *I* is *Aa*'-indiscernible;
- For every infinite *A*-indiscernible sequence *I* such that $b \in I$ there is some $J \equiv_{Ab} I$ such that *J* is *Aa*-indiscernible.

EXERCISE 4. Use the above exercise to show the following property of dividing: Suppose tp(a/B) does not divide over $A \subseteq B$ and tp(b/Ba) does not divide over Aa. Then, tp(ab/B) does not divide over A.

EXERCISE 5. Let Δ be as above. Show that there is $\psi_{\Delta}(x, y_0, \dots, y_n, z, z_0, \dots, z_{2n})$ such that

- if $|A| \ge 2$, each Δ -formula over A is equivalent to some $\psi_{\Delta}(x, \overline{a})$ for \overline{a} a tuple from A;
- any consistent formula of the form $\psi_{\Delta}(x, \overline{a})$ for \overline{a} a tuple from A is equivalent to a Δ -formula over A;
- if all formulas in Δ are stable, then so is ψ_{Δ} .