ZOMBIE EXERCISE 1. Consider a stable theory *T*. Let $p \in S_x(B)$ and let $A \subseteq B$. Show that the following are equivalent:

- *p* does not fork over *A*;
- there is a global type extending p which is $\operatorname{acl}^{eq}(A)$ -invariant;
- there is a global type extending p which is $\operatorname{acl}^{eq}(A)$ -definable.

Theorem 1 (Independence in Stable Theories). Let *T* be stable. Then, \bigcup (considered as a ternary relation on small subsets of \mathbb{M}) satisfies the following properties:

- 1. (Invariance) If $A \downarrow_C B$ and $\sigma \in Aut(\mathbb{M})$, then $\sigma A \downarrow_{\sigma C} \sigma B$;
- 2. (Finite Character) $A \downarrow_C B$ if and only if $A_0 \downarrow_C B_0$ for all finite $A_0 \subseteq A, B_0 \subseteq B$;
- 3. (Extension) if $A \downarrow_C B$, then for any D there is $A' \equiv_{CB} A$ such that $A' \downarrow_C BD$;
- 4. (Algebraicty) If $A \downarrow_C A$, then $A \subseteq \operatorname{acl}^{eq}(C)$;
- 5. (Local Character) For A finite and for any B there is $C \subseteq B$ such that $|C| \leq |T|$ and $A \downarrow_C B$;
- 6. (Transitivity and Monotonicity) $A \downarrow_C B$ and $A \downarrow_{CB} D$ if and only if $A \downarrow_C BD$ (with transitivity being the \Rightarrow implication and transitivity being the \leftarrow implication);
- 7. (Symmetry) $A \perp_C B$ if and only if $B \perp_C A$;
- 8. (Stationarity) Let a and b be finite. Suppose that $a \equiv_{acl^{eq}(C)} b$ and $a \downarrow_C D$ and $b \downarrow_C D$. Then, $a \equiv_{acl^{eq}(AC)} b$.

EXERCISE 2. Prove Theorem 1.[See Lecture notes for hint with references to previous theorems.]