- **EXERCISE 1.** Let *T* be an arbitrary theory. Suppose that $p \in S(\mathbb{M})$ forks over *A* with $|A| \leq \kappa$. Then *p* has $\geq \kappa$ many Aut(\mathbb{M}/A)-conjugates.
- **EXERCISE 2.** Let *T* be stable. Show there is an ordinal α such that if $U(p) \ge \alpha$, then $U(p) = \infty$. [Hint: use local character.]

Theorem 1 (Equivalents to superstability). *Let T be stable. The following are equivalent:*

- 1. *T* is superstable (in the sense of Definition ??);
- 2. Every type has ordinal-valued U-rank;
- 3. For every finite tuple a and every B there is some finite $C \subseteq B$ such that $a \downarrow_C B$.

EXERCISE 3. Prove the implication $(3) \Rightarrow (1)$ in Theorem 1.

ZOMBIE EXERCISE 4. Consider a stable theory *T*. Let $p \in S_x(B)$ and let $A \subseteq B$. Show that the following are equivalent:

- *p* does not fork over *A*;
- there is a global type extending p which is $\operatorname{acl}^{eq}(A)$ -invariant;
- there is a global type extending p which is $acl^{eq}(A)$ -definable.