Extra exercises are marked with a $\star\star$. I DO NOT EXPECT YOU TO ANSWER THEM. I hope they can bring you joy.

Definition 1. Let $A \subseteq \mathcal{M} \models T$. We say that M is **prime over** A if for all $\mathcal{N} \models T$ and $f : A \to \mathcal{N}$ a partial elementary map, f extends to an elementary $f' : \mathcal{M} \to \mathcal{N}$.

EXERCISE 1. Show the following: Let *T* be a countable *ω*-stable theory, $M \models T$ and *A* ⊆ *M*. Then, there is M_0 \leq *M* which is a prime model over *A* and such that every $a \in M_0$ realises an isolated type over *A*.

Theorem 2 (Lachlan). Let T be *w*-stable, $\mathcal{M} \models T$, $|M| \ge \aleph_1$. Then, for each $\kappa > |M|$ there is $\mathcal{N} \succeq \mathcal{M}$ of cardinality κ such that for any countable set of $\mathcal{L}(M)$ -formulas $\Gamma(x)$ in a finite variable *x*, *if* N *realises* $\Gamma(x)$ *, then so does* M *.*

EXERCISE [2](#page-0-0). We shall prove Theorem 2 following the steps below. Consider an ω -stable theory *T* and $M \models T$, such that $|M| \geq \aleph_1$. Say that an $\mathcal{L}(M)$ -formula is large if $\phi(M)$ is uncountable.

- Prove that there is a large $\mathcal{L}(M)$ -formula $\phi_0(x)$ such that for any other $\mathcal{L}(M)$ -formula *ψ*, either $φ_0(x) ∧ ψ(x)$ or $φ_0(x) ∧ ¬ψ(x)$ has a countable set of realisations.
- Consider

 $p(x) := \{ \psi(x) | \psi(x) \in \mathcal{L}(M) \text{ and } \phi_0(x) \wedge \psi(x) \text{ is large } \}.$

Show that *p* is a complete type over *M* which is not realised in *M* but such that all of its countable subsets are realised in *M*. Take $\mathcal{N}' \succeq \mathcal{M}$ with a point *a* realising *p*.

- By Exercise [1,](#page-0-1) take $\mathcal{N} \preceq \mathcal{N}'$ prime over *Ma* and such that every $b \in \mathcal{N}$ realises an isolated type over *Ma*. Show that for every $b \in N$, every countable subset $\Gamma(x)$ of tp(*b*/*M*) is realised in *M*.
- Deduce Theorem [2.](#page-0-0)

EXERCISE 3. Show that the theory of the random graph has a Vaughtian pair.

** **EXERCISE 4.** Show that there is no Vaughtian pair of real closed fields.

Definition 3. We say that *T* **eliminates the quantifier** $\exists^{\infty}x$ if for every *L*-formula $\phi(x,\overline{y})$ there is $n_\phi \in \mathbb{N}$ such for all tuples $\bar{a} \in \mathbb{M}^{|\overline{y}|}$, if $|\phi(\mathbb{M},\bar{a})| \geq n_\phi$, then $\phi(\mathbb{M},\bar{a})$ is infinite.

EXERCISE 5. Show that if *T* has no Vaughtian pairs, then it eliminates the quantifier $\exists^{\infty} x$.

EXERCISE 6. Suppose that *T* eliminates the quantifier $\exists^{\infty}x$. Let $\mathcal{M} \models T$ and let $\phi(x) \in$ $\mathcal{L}(M)$ be minimal in M. Show that $\phi(x)$ is strongly minimal.

Definition 4. For infinite cardinals $\kappa > \lambda$, we say that *T* has has a (λ, κ) -model if $|M| = \kappa$ and for some $\phi(x) \in \mathcal{L}$, $|\phi(M)| = \lambda$.

EXERCISE 7. Prove the following:

- 1. If *T* has a (κ, λ) -model then it has a Vaughtian pair (and so an (\aleph_1, \aleph_0) -model [Hint: this should be trivial];
- 2. Prove that if *T* is *ω*-stable and has an (\aleph_1, \aleph_0) -model, then for each $\kappa > \aleph_1$, *T* has a (κ, \aleph_0) -model [Hint: you may need to use Theorem [2\]](#page-0-0).

 $\star\star$ **EXERCISE 8.** We show that in Exercise [7](#page-0-2) (2), the assumption of ω -stability is necessary. Let $\mathcal{L} = \{P_0, \ldots, P_n, E_1, \ldots, E_n\}$ for unary predicates P_i and binary relations E_i . Consider the L -theory T stating that:

- the P_i are infinite and partition the domain;
- for each *i* ∈ {1, . . . , *n*}, ∀*xy*(*Ei*(*x*, *y*) → *Pi*−1(*x*) ∧ *Pi*(*y*));

• for each $i \in \{1, ..., n\}$, $\forall xy((P_i(x) \land P_i(y) \land \forall z(E_i(z, x) \leftrightarrow E_i(z, y))) \rightarrow x = y)$.

For example, for X_0 an infinite, take $X_{i+1} = \mathcal{P}(X_i)$ for $i \in \{1, ..., n\}$. Let M be the disjoint union of the *Xⁱ* with *Pⁱ* naming each of the *Xⁱ* and *Eⁱ* being the membership relation restricted to $X_i \times x_{i+1}$. Then, $\mathcal{M} \models T$. Show that if $\mathcal{M} \models T$ and $|P_0(M)| = \aleph_0$, then $|M| \leq \mathbb{I}_n$. Hence, M has a (\mathbb{I}_n, \aleph_0) -model but it does not have a (κ, \aleph_0) -model for arbitrarily large *κ*. [Hint: I would only do the case of $n = 1$. Recall that $\Box_0 = \aleph_0$ and $\Box_{\alpha+1} = 2^{\Box_{\alpha}}.$]