The next lecture is entirely dedicated to exercises.

EXERCISE 1. Let $\phi(x; y)$ and $\psi(x, z)$ be stable *L*-formulas. Show the following:

- 1. $\phi^{opp}(y; x) := \phi(x; y)$ is stable;
- 2. $\neg \phi(x; y)$ is stable;
- 3. $\theta(x; yz) := \phi(x; y) \wedge \psi(x; z)$ is stable;
- 4. $\theta(x; yz) := \phi(x; y) \vee \psi(x; z)$ is stable;
- 5. For $y = uv$ and $c \in M^{[v]}$, $\phi(x; u, c)$ is stable.

EXERCISE 2. Show that the following are equivalent:

- 1. *T* is stable (in the sense of being *κ*-stable for some infinite *κ*);
- 2. every *L*-formula $\phi(x; y)$ is stable for *T*;
- 3. *T* is *κ*-stable for all *κ* such that $\kappa^{|T|} = \kappa$.

Definition 1. For *κ* an infinite cardinal, let

$$
ded(\kappa) := sup\{|I| : I \text{ is a linear ordering with a dense subset of size } \kappa\}.
$$

It is easy to see that $\kappa < \text{ded}(\kappa) \leq 2^{\kappa}$.

Definition 2. Let *T* be a countable theory. Write f_T : Card \rightarrow Card for the function on cardinals given by

$$
f_T(\kappa) := \sup\{|S_n(M)| : \mathcal{M} \models T, |M| = \kappa, n \in \omega\}.
$$

[It is easy to see that if we fixed *n* in the definition above, we would still get f_T .]

EXERCISE 3. Prove that if *T* is unstable, then $f_T(\kappa) \geq \text{ded}(\kappa)$ for all cardinals $\kappa \geq |T|$.

Recall the following definitions and lemmas from the Model Theory course:

Definition 3. Let *I* be an infinite linear order and *A* a set of parameters. We say that $(a_i|i \in I)$ is **indiscernible** over *A* if for every $\mathcal{L}(A)$ -formula $\phi(x_1, \ldots, x_n)$ and $i_1 < \cdots <$ $i_n, j_1 < \cdots < j_n$ from *I*, we have that

$$
\vDash \phi(a_{i_1}, \ldots, a_{i_n}) \leftrightarrow \phi(a_{j_1}, \ldots, a_{j_n}). \tag{1}
$$

We say that the sequence is **totally indiscernible** over *A* if the condition [1](#page-0-0) holds for any $\{i_1, \ldots, i_n\}, \{j_1, \ldots, j_n\}$ from *I* of size *n*.

For a sequence (*aⁱ* |*i* ∈ *I*), its **EM-type** (i.e. Ehrenfeucht-Motowski type) over *A* is given by

$$
EM(a_i|i \in I) := \{ \phi(x_1,\ldots,x_n) \in \mathcal{L}(A) \mid \vDash \phi(a_{i_1},\ldots,a_{i_n}) \text{ for all } i_1 < \cdots < i_n, n < \omega \}.
$$

Lemma 4 (Extracting indiscernible sequences). Let A be a set of parameters and $(b_i | i \in I)$ a *infinite sequence. Let J be a linear order. Then, there is a sequence* (*a^j* |*j* ∈ *J*) *which is indiscernible over A and realising the same EM-type as* $(b_i|i \in I)$ *.*

- **EXERCISE 4.** Show that *T* is unstable if and only if there is an infinite sequence $(a_i|i < \omega)$ and a formula $\phi(x, y)$ such that $\models \phi(a_i, a_j)$ if and only if $i < j$;
	- Show that if *T* is unstable there is an indiscernible sequence which is not totally indiscernible;

• Show that if *T* is stable then every indiscernible sequence is totally indiscernible. [Hint: Say that we have an indiscernible sequence $(a_i|i < w)$ which is not totally indiscernible. Show that there is a formula $\phi(x_1, \ldots, x_n)$ such that for some transposition *τ* switching only two consecutive variables

$$
\vdash \phi(a_1,\ldots,a_n) \land \neg\phi(a_{\tau(1)},\ldots,a_{\tau(n)}).
$$

Use this formula to find an unstable formula in *T*.]

Theorem 5 (Erdös-Makkai). Let *B* be an infinite set and $\mathcal{F} \subseteq \mathcal{P}(B)$ with $|B| < |\mathcal{F}|$. Then, there a re sequences $(b_i|i<\omega)$ of elements of B and $(S_i|i<\omega)$ of elements of ${\cal F}$ such that for all $i,j\in\omega$, *we have that*

- *EITHER* $b_i \in S_j$ *if and only if* $j < i$;
- *OR* $b_i \in S_j$ *if and only if* $i < j$ *.*

EXERCISE 5 (Proof of Erdös-Makkai). Note that there is $\mathcal{F}' \subseteq \mathcal{F}$ such that $|\mathcal{F}'| = |B|$ and for all $B_0, B_1 \subseteq B$ finite, if there is some $S \in \mathcal{F}$ such that $B_0 \subseteq S, B_1 \subseteq B \setminus S$, then there is some $S' \in \mathcal{F}$ with $B_0 \subseteq S', B_1 \subseteq B \setminus S'$. Note that there is $S^* \in \mathcal{F}$ which is not a Boolean combination of elements of \mathcal{F}' . Now, prove Erdös-Makkai. [Hint: you need to construct appropriate sequences in S^* , $B \setminus S^*$ and \mathcal{F}' , and then use Ramsey's theorem.]