Definition 1. We say that $\phi(x, y)$ has the **independence property**, IP, if there are $(b_i | i < \omega)$ and $(a_s|s\subseteq\omega)$ such that

$$
\vDash \phi(a_s, b_i) \Leftrightarrow i \in s.
$$

We say that $\phi(x, y)$ is NIP if it does not have the independence property. A theory is NIP if all of its formulas are NIP.

Example 2. The random graph has the independence property.

EXERCISE 1. Prove that a formula $\phi(x, y)$ has IP if and only if there is an indiscernible sequence $(b_i|i \in I)$ and a parameter *a* such that

 $\models \phi(a, b_i)$ if and only if *i* is even.

Definition 3. We say that $\phi(x, y)$ has the **strict order property**, SOP if there is an infinite sequence $(b_i)_{i\leq \omega}$ such that $\phi(\mathbb{M}, b_i) \subsetneq \phi(\mathbb{M}, b_i)$ for all $i < j < \omega$. We say that $\phi(x, y)$ is NSOP if it does not have the strict order property, and we say that a theory *T* is NSOP if all of its formulas are NSOP.

EXERCISE 2. Prove that *T* is stable if and only if it is NIP and NSOP. [Hint: For the (\Leftarrow) direction, consider an unstable theory with NIP and prove it must have the SOP.]

Definition 4. Let *R* be an associative ring with identity. Let $\mathcal{L}_R := \{+, 0, (\mu_r)_{r \in R} \}$, where the μ_r are unary function symbols. The theory of (left) *R*-modules T_R asserts of a model *M* that (*M*, +, 0) is an Abelian group, and each *f^r* is an endomorphism of this group with *f*¹ being the identity map. Note that this theory is not complete.

Definition 5. An *L*-formula is called **primitive positive** if it is an existential quantification of a conjunction of atomic formulas. That is, if it is of the form

$$
\exists \overline{y} \bigwedge_{i \leq n} \psi_i(\overline{x}, \overline{y}),
$$

where the formulas $\psi_i(\overline{x}, \overline{y})$ are atomic.

Fact 6. *The theory T^R has elimination of quantifiers up to primitive positive formulas. That is, for every* \mathcal{L}_R -sentence, $\phi(\overline{x})$ *there is a Boolean combination of primitive positive formulas* $\psi(\overline{x})$ *such that* $T_R \models \forall \overline{x} \phi(\overline{x}) \leftrightarrow \psi(\overline{x})$ *.*

EXERCISE 3. Consider a primitive positive \mathcal{L}_R -formula $\phi(\bar{x}, \bar{z})$ and let *M* be an *R*-module. Show that $\phi(\bar{x}, \bar{0})$, where $\bar{0}$ is a string of 0's of length $|\bar{z}|$ defines either \varnothing or a subgroup of $M^{|\overline{x}|}$. Show that for any tuple \overline{a} such that $\phi(\overline{x},\overline{a})$ is consistent, $\phi(M,\overline{a})$ is a coset of $\phi(\overline{x},\overline{0})$. Deduce that that for any tuples \bar{a} , \bar{b} , $\phi(\bar{x}, \bar{a})$ and $\phi(\bar{x}, \bar{b})$ are either mutually inconsistent or equivalent. Using elimination of quantifiers up to pp-formulas, prove that for any *R*module *M*, its theory is stable.

Definition 7. A group *G* satisfies the *ω***-stable descending chain condition** if there is no infinite proper descending chain of definable subgroups of *G*,

$$
\cdots < H_{i+1} < H_i < \cdots < H_1 < G.
$$

EXERCISE 4. Show that if *G* is an ω -stable group (i.e. a group whose theory is ω -stable), then *G* satisfies the *ω*-stable descending chain condition. Show that for an *R*-module *M*, the following are equivalent:

- *M* is *ω*-stable;
- *M* has the *ω*-stable descending chain condition;
- For any set of pp-formulas in a single variable $\{\phi_n(x)|n < \omega\}$ there is some $n \in \omega$ such that for all $m \in \omega$, $M \models \forall x (\bigwedge_{i < n} \phi_i(x) \rightarrow \phi_m(x)).$