Next time I will also ask to present some of the exercises on modules from the previous problem sheet.

Corollary 1. For $E_1, \ldots E_k \in ER(T)$ and $\phi(x_1^{E_1}, \ldots, x_k^{E_k})$ an \mathcal{L}^{eq} -formula, there is an \mathcal{L} -formula $\psi(\overline{y}_1, \ldots, \overline{y}_k)$ such that

 $T^{eq} \vdash \forall \overline{y}_1 \dots \overline{y}_k(\psi(\overline{y}_1 \dots \overline{y}_k) \leftrightarrow \phi(\pi_{E_1}(\overline{y}_1) \dots \pi_{E_k}(\overline{y}_k))).$

EXERCISE 1. Let *F* be the forgetful map

$$F: S_{(S_-)^n}(T^{eq}) \to S_n(T)$$

sending types of real *n*-tuples in T^{eq} to their restriction to an *n*-type in *T*. Show that *F* is a homeomorphism. Prove Corollary 1.

EXERCISE 2. Let κ be an infinite cardinal with $\kappa \geq |\mathcal{L}|$. Show the following:

- If \mathcal{M} is κ -saturated, then \mathcal{M}^{eq} is κ -saturated;
- If \mathcal{M} is strongly κ -homogeneous, then \mathcal{M}^{eq} is strongly κ -homogeneous;
- If *T* is κ -categorical, then T^{eq} is κ -categorical.
- If *T* is κ -stable, then T^{eq} is κ -stable;
- If *T* is stable, then *T*^{*eq*} is stable;
- If *T* is NIP, then *T^{eq}* is NIP;
- If *T* is NSOP, then T^{eq} is NSOP.

For *X* a non-empty set and $G \frown X$ we can endow *G* with the pointwise-convergence topology, where stabilizers of finite sets G_A for $A \subseteq X$ finite form a basis of clopen neighbourhoods of the identity. Hence, the cosets of stabilizers of finite sets gG_A for $A \subseteq X$ finite and $g \in G$ form a basis of clopen sets.

EXERCISE 3. Consider Aut(M) $\curvearrowright M$ for M countable and ω -categorical. Note that Aut(M) = Aut(M^{eq}). Prove that the open subgroups of Aut(M) are precisely the stabilizers of imaginaries Aut(M/e) for $e \in M^{eq}$. [Hint: the (\Leftarrow) direction does not use ω -categoricity. For the (\Rightarrow) direction, note that for any $H \leq Aut(M)$ and $\overline{a} \in Aut(M)$ the equivalence relation E on the Aut(M)-orbit of \overline{a} Orb(\overline{a}) given by

 $E(g_1\overline{a}, g_2\overline{a})$ if and only if $g_2^{-1}g_1 \in H$

is a 0-definable relation.]