Next time I will also ask to present some of the exercises on modules from the previous problem sheet.

EXERCISE 1. Let *X* be a definable subset of \mathbb{M}^n . Let *A* be a set of parameters, and let *b* be a canonical parameter for *X*.

- Show that X is definable over A if and only if $b \in dcl^{eq}(A)$;
- Show that the following are equivalent:
 - X is almost A definable, i.e. there is an A-definable equivalence relation E on *n*-tuples with finitely many classes and such that X is a union of E-classes;
 - $\{\sigma(X) | \sigma \in \operatorname{Aut}(\mathbb{M}/A)\}$ is finite;

-
$$\{\sigma(X)|\sigma \in \operatorname{Aut}(\mathbb{M}/A)\} < |\mathbb{M}|;$$

- $b \in \operatorname{acl}^{eq}(A)$.

EXERCISE 2. Show that *T* has EI if and only if for each $\phi(\overline{x}) \in \mathcal{L}(\mathbb{M})$ there is $\psi(x, y) \in \mathcal{L}$ such that there is a unique $\overline{a} \in \mathbb{M}$ such that $\phi(\mathbb{M}) = \psi(\mathbb{M}, \overline{a})$.

EXERCISE 3. Show that T^{eq} eliminates imaginaries. [Hint/thoughts: techically, there is no problem in defining imaginaries for a multi-sorted structure and so check the original definition. However, it is probably more convenient to show that definable subsets of \mathbb{M}^{eq} have canonical parameters in \mathbb{M}^{eq} .]

EXERCISE 4. Show that the following are equivalent

- 1. *T* has weak elimination of imaginaries;
- 2. For every definable X there is a finite set $\{\overline{a}_1, \ldots, \overline{a}_n\}$ such that for all $\sigma \in Aut(\mathbb{M})$

 $\sigma(X) = X$ if and only if σ permutes the \overline{a}_i ;

- 3. For each $\phi(\overline{x}) \in \mathcal{L}(\mathbb{M})$ there is $\psi(\overline{x}, \overline{y})$ such that there is only a finite number of \overline{a} such that $\phi(\mathbb{M}) = \psi(\mathbb{M}, \overline{a})$;
- 4. For every definable *X* there is a smallest (real) algebraically closed set *A* such that *X* is *A*-definable.

EXERCISE 5. Let \mathcal{M} be the countable model of an ω -categorical theory. The following are equivalent:

- Th(M) has WEI;
- for all $A, B \subseteq M$ algebraically closed, we have

 $\operatorname{Aut}(M/A \cap B) = \langle \operatorname{Aut}(M/A), \operatorname{Aut}(M/B) \rangle.$