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1 Why Model Theory II?

A major theme of model theory is that certain combinatorial properties of definable sets in a
first order theory yield a lot of structural information about it. They can imply that a theory
has a good notion of independence, or dimension, like in vector spaces, or help us under-
stand the behaviour of groups or geometries interpretable in it. Sometimes, these proper-
ties can determine important algebraic features. This course will focus mainly on some of
the strongest model theoretic properties: stability, and its strengthenings ω-stability and
superstability.

Modern model theory begins with the work of Morley [14], and subsequently Shelah [17]
on the spectrum problem: what are the possible behaviours of the function I(ℵα, T), count-
ing the number of non-isomorphic models of T of cardinality ℵα? Morley showed that,
for countable T, if I(ℵα, T) = 1 for some uncountable cardinal, then this is the case for
all uncountable cardinals. Shelah studied for which theories we can define a system of
invariants under which sufficiently large models of T can be classified. In this process he
defined various properties that shaped the development of model theory. Two of the major
results of [17] are that I(ℵα, T) is non-decreasing for uncountable cardinals and the Main
Gap Theorem: for α > 0, either T has the maximum number of models in each uncountable
cardinality, I(ℵα, T) = 2ℵα , or it satisfies few model theoretic properties, including super-
stability, and it is bounded above by iω1

(|α|).

Over the years, a very sophisticated theory of stability [16] was developed, with fruitful
generalisations to NIP [18], simple [9], and NSOP1 theories [7]. A map of the universe with
more model theoretic properties and many examples is given on the website forkinganddi-
viding.com. Model theory has fruitful applications and interactions in algebraic geometry
[3], differential algebra [13], group theory [5, 1], number theory [11], and combinatorics
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[12]. Some classical notions from model theory have been independently discovered many
times, such as VC-dimension in probability and combinatorics [10], and PAC learning and
Littlestone dimension in machine learning [6]. My own research at TU Wien focuses on the
computational complexity of problems in model theoretic structures [2], and on interac-
tions between model theory and probability [4]. Overall, model theory is a highly versatile
subject with many beautiful results, some of which we will cover in this course. I hope you
will enjoy it!

2 The monster model

This first lecture will require some additional knowledge of set theory and cardinal arithmetics. If
you are not familiar with set theory, Appendix A in [19] should contain most relevant facts. One of
the advantages of the construction of the monster model in this lecture is preventing us from keeping
track of issues of cardinal arithmetics later in the course.

Almost every article or book in model theory begins with the convention that we are work-
ing in a monster model M. These are very large models of T distinguished by being highly
saturated, strongly homogeneous, and universal in the following sense:

Definition 2.1. Let κ be an infinite cardinal. We say that M |= T is:

• κ-saturated if it realises types (in finitely many variables) over sets of parameters of
cardinality < κ;

• κ-universal if every model of T of cardinality < κ elementarily embeds into M;

• κ-homogeneous if for all A ⊆ M of size < κ and a ∈ M, every elementary map
f : A → M can be extended to an elementary map A ∪ {a} → M;

• strongly κ-homogeneous if for all A ⊆ M of size < κ, any elementary map f : A →
M can be extended to an automorphism of M.

We say that M is saturated if it is |M|-saturated.

Remark 2.2. Recall that M is κ-saturated if and only if it is κ-saturated over 1-types, i.e. if it
realises 1-types over sets of parameters of cardinality < κ;

In the following exercises we work with |L| ≤ κ:

Exercise 2.3. Prove that if M is κ-saturated then it is κ-homogeneous.

Exercise 2.4. Show that if M is κ-saturated, then it is κ+-universal.

Exercise 2.5. (a) Show that if M is |M|-homogeneous, then it is strongly |M|-homogeneous.
(b) For each cardinal κ, give an example of a κ-saturated structure M which is not strongly
ω-homogeneous.

Exercise 2.6. Show that M is κ-saturated if and only if it is κ-homogeneous and κ+-universal.

Ideally, we would like to work with a large saturated model since these models are uni-
versal, homogeneous and strongly homogeneous. We will see that for this we will need
additional set theoretic assumptions.

Remark 2.7. Let (X,≤) be a linear order. We say that Y ⊆ X is cofinal with X if for each
x ∈ X there is some y ∈ Y with x ≤ y. The cofinality of X, cf(X) is the smallest cardinality
of a cofinal subset of X. We say that an infinite cardinal is κ is regular if cf(κ) = κ. Any
successor cardinal κ+ is a regular cardinal, and so is ω.

Theorem 2.8. Let |L| ≤ κ and M be a model of cardinality ≤ 2κ . Then, M has an elementary
extension N which is κ+-saturated and of size ≤ 2κ .

Proof. We build an elementary chain (Mλ)λ<κ+ such that
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• |Mλ| ≤ 2κ for each λ < κ;

• Mλ+ realises all types over subsets of Mλ of cardinality ≤ κ;

Firstly, we show such chain exists and then we will show that its union, N satisfies the re-
quirements of the theorem. We show how to perform the successor step. Since by inductive
hypothesis |Mλ| ≤ 2κ , Mλ has 2κ subsets of size ≤ κ. Since |L| ≤ κ, over each B ⊆ Mλ

with |B| ≤ κ, there are at most 2κ-many 1-types. In particular, there are at most 2κ-many
1-types over sets of size ≤ κ. All of these can be realised in a model Mλ+ of cardinality
≤ 2κ .

We show that N :=
⋃

λ<κ+ Mλ is κ+-saturated and of size ≤ 2κ . For κ+-saturation, con-
sider B ⊆ N of size < κ+. Since κ+ is regular there must be some λ ≤ κ+ such that
B ⊆ Mλ (otherwise, there would be a cofinal subset with κ+ of cardinality ≤ |B| < κ+).
Hence, all 1-types over B are realised in Mλ+ . Finally, for the cardinality,

|N | ≤
⋃

λ<κ+

2κ ≤ 2κ ,

where the last inequality holds since we are taking a union of sets of size ≤ α over ordinals
< α, where α is an infinite cardinal.

Definition 2.9. Let κ be an infinite cardinal. A cardinal α is called a strong limit cardinal if
for all cardinals β < α, we have 2β

< α. A regular strong limit cardinal is called a strongly
inaccessible cardinal.

Remark 2.10. It is easy to construct strong limit cardinals within ZFC. Moreover, the global
continuum hypothesis, (GCH) implies that every limit cardinal is a strong limit cardinal.
However, ZFC is consistent with there being no strongly inaccessible cardinals apart from
ω.

Corollary 2.11. Let |L| ≤ κ and T be an L-theory (with infinite models).

(a) Assuming (GCH), T has a saturated model in each regular cardinal ν > κ;

(b) T has a saturated model in each strongly inaccessible cardinal ν > κ.

Proof. (Omitted from lecture) The ideas are essentially the same of the previous proof. (a)
If ν is a successor cardinal the argument is immediate. For a limit cardinal, one can use
an analogue of the argument below. (b) Starting from a model M0 of cardinality κ, using
Theorem 2.8, we build an elementary chain (Mλ)λ<ν, where Mλ+ is λ+-saturated and of
cardinality ≤ 2λ, and take N to be the union of this chain. Since ν is a strong limit cardinal,

|N | ≤
⋃

λ<ν

2λ ≤ ν.

Note that a β-saturated model must be of cardinality ≥ β. Hence, |N | ≥ λ+ for each λ < ν,
meaning that |N | = ν. Finally, we need to show saturation. Take A ⊂ N of cardinality
< ν. Since ν is regular, a set of cardinality |A| cannot be cofinal with it, meaning that there
is some |A| ≤ λ < ν such that Mλ entirely contains |A|. Since Mλ is λ+ saturated, it
realised all types over A, and so does N .

Example 2.12. • (C; 0, 1;+, ·) is a saturated model of the theory of algebraically closed
fields;

• In general, one can prove that stable theories have saturated models of arbitrarily
large cardinalities;

• If the continuum hypothesis is false, the theory of (N; 0, 1;+, ·) has no saturated mod-
els of cardinality κ for each ℵ0 < κ < 2ℵ0 .
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Convention 2.13. From now on we will work with a monster model M. which is κ-
saturated, κ-universal and strongly κ-homogeneous for κ a cardinal larger than all of the
cardinalities of models and sets of parameters that we want to consider. Thus, all models
M,N , . . . we will consider will be elementarily embedded into this monster model, all sets
of parameters A, B, . . . will be subsets of the monster model of cardinality < κ, and a set
of formulas will be consistent if it is realised in M. Finally, for a formula φ or a type p, we
write � φ (or � p) if M � φ (respectively, M � p).

Remark 2.14. There are several ways to achieve the above:

• Assume that strongly inaccessible cardinals exist and work in a sufficiently large one.
We will adopt this approach since it allows us to move quickly to do more model theory;

• Work in BGC (Bernays-Gödel+Global Choice) set theory. This is a conservative ex-
tension of ZFC which allows working with classes. In this framework we can build
the monster model as a class-size union of chains.

• Work with a special model (see Definition 2.16) of cardinality ν = iκ(ℵ0). This will be
ν+-universal and strongly κ-homogeneous (add so κ-saturated by Exercise 2.6). This
framework has the advantage of allowing us to work entirely within ZFC. If you
are not comfortable with strongly inaccessible cardinals, you are welcome to read
Subsection 2.1 and work with a large enough special model instead.

Lemma 2.15. Let X be a definable subset of M and A a set of parameters (i.e. a set of size < κ
inside of M). Then, the following are equivalent:

(a) X is definable over A;

(b) X is Aut(M/A)-invariant (i.e. invariant under automorphisms of M fixing A pointwise).

Proof. (⇒) This direction works in every model M. Suppose that X := φ(M, b) for some
b ∈ A. Then, for every a ∈ M and σ ∈ Aut(M/A), we have that

a ∈ X ⇔� φ(a, b) ⇔ φ(σ(a), σ(b)) ⇔ φ(σ(a), b) ⇔ σ(a) ∈ X,

where the second last equivalence holds since b ∈ A and σ fixes A pointwise.

(⇐) Let X = φ(M, b) and let p(y) := tp(b/A).

Claim 1: p(y) ⊢ ∀x(φ(x, y) ↔ φ(x, b)).

Proof of Claim. Take b′ ⊢ p(y). By strong homogeneity there is some σ ∈ Aut(M/A) with
σ(b) = b′. By assumption, X = σ(X) = φ(M, b′), yielding the desired formula is implied
by p(y).

By compactness, there is some ψ(y) ∈ p(y) such that

ψ(y) � ∀x(φ(x, y) ↔ φ(x, b)) (1)

Take θ(x) := ∃y(ψ(y) ∧ φ(x, y)). This is an LA-formula. We claim X = θ(M). For (⊆) take
a ∈ X. So ⊢ φ(a, b). Since ψ(y) ∈ tp(b/A), � θ(a). For (⊇), if � θ(a) there is some b′ such
that � ψ(b′) ∧ φ(a, b′). By � ψ(b′) (1), we have � φ(a, b), as desired.

2.1 Aside: special models

An issue with our definition of monster model being a saturated model of size a strongly
inaccessible cardinal is that it makes it less transparent that our results are provable in
ZFC. A more cautious reader might want to work with special models. An even more
set theoretically oriented reader, might be interested in the approach of [8], which partially
justifies the standard model theoretic practice of assuming we are working with a saturated
model of large enough cardinality.
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Definition 2.16. An infinite structure M of cardinality κ is special if it is the union of
an elementary chain (Mλ)λ<κ , where the λ are cardinals of size < κ and each Mλ is κ+-
saturated.

⋆⋆ Exercise 2.17. Let |L| ≤ κ. Show that the following hold:

(a) If M is saturated then it is special;

(b) A special structure of regular cardinality is saturated;

(c) Suppose that λ < ν implies 2λ ≤ ν. Then, T has a special model of cardinality ν;

(d) A special structure of cardinality κ is κ+-universal and strongly cf(κ)-homogeneous.

Definition 2.18. For every cardinal µ, the beth function is defined as

iα(µ) =











µ if α = 0,

2iβ(µ), if α = β + 1,

supβ<αiβ(µ) if α is a limit ordinal.

Remark 2.19. We have that cf(iκ(ℵ0)) = κ, meaning that a special model of cardinality
ν = iκ(ℵ0) is strongly κ-homogeneous, ν+-universal, and κ-saturated. There is no harm
in working with a special model of such cardinality as the monster model (except from
having to prove exercise 2.17).

3 Strong minimality and algebracity

From now on it will be important to keep in mind the conventions that we set in the previous lecture
(Convention 2.13). In particular, models are always taken to be elementary substructures of the
monster model M and parameter sets A, B, . . . are always taken to be small enough and live in the
monster model (which is why I don’t specify every time where they come from).

Definition 3.1. We say that a formula φ(x) ∈ L(A) is algebraic (over A) if φ(M) is finite.
a ∈ M is algebraic over A if it realises an algebraic formula over A.
We denote by acl(A) the set of elements algebraic over A. For π a partial type over A
(closed under conjunctions), we say that it is algebraic if it contains an algebraic formula.

Y Observation 3.2. Note if a formula φ(x) ∈ L(A) is algebraic, then it has the same set of
realisations in every model containing A.

Exercise 3.3. Prove Neumann’s Lemma: Let A, B ⊆ M and (c1, . . . , cn) a sequence of ele-
ments not algebraic over A. Show that tp(c1, . . . , cn/A) has a realisation which is disjoint
from B.

Exercise 3.4. Show that acl(A) is the intersection of all models containing A.

Definition 3.5. Let M be a model. Let φ(x) ∈ L(M) be a non-algebraic formula. We say
that φ is minimal in M if for all L(M)-formulas ψ(x),

φ(M) ∧ ψ(M) is finite or cofinite in φ(M).

We say that φ(x) ∈ L(M) is strongly minimal if it is minimal in the monster model M.
A theory T is strongly minimal if x = x is strongly minimal. A type p ∈ S(A) is strongly
minimal if it contains a strongly minimal formula.

Examples 3.6 (Strongly minimal theories). It is easy to prove strong minimality of the fol-
lowing theories by quantifier eliminations:

• The theory T∞ of an infinite set with equality;

• The theory of infinite vector spaces over a field K, (V; 0;+; (λk)k∈K);
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• ACFp, the theory of algebraically closed fields in characteristic p.

Example 3.7 (A minimal set which is not strongly minimal). Consider the structure M
with an equivalence relation E that has countably many equivalence classes, one of each
finite size and no infinite classes. Note that each equivalence class is a definable subsets of
M (using quantifiers). One can then show that adding predicates Pn for each equivalence
class to the language, the (new) theory of M has quantifier elimination (for example, by
[19, Theorem 3.2.5]). From this it is easy to see that every definable subset of M is either
finite or cofinite. However, M ≻ M has an infinite class (by ω-saturation). So for a in this
class, E(x, a) is infinite and coinfinite. Note that the fact M is not ω-saturated plays an
important role here (see Exercise 3.9 below).

Non-examples 3.8. • The theory of two infinite predicates partitioning the domain is
not strongly minimal. However, each predicate is;

• The theory of the random graph has no strongly minimal formula.

Exercise 3.9. Prove the following: let M be ω-saturated. Suppose that φ ∈ L(M) is mini-
mal in M. Then φ is strongly minimal.

Exercise 3.10. (a) Consider the theory of (Z, s), the integers with the successor operation
s(x) = x + 1. This theory has quantifier elimination. What is algebraic closure in this
theory? Is this x = x in (Z, s) minimal? is it strongly minimal?

(b) Consider the theory of (N,<). This theory has quantifier elimination if we add a
function symbol for the successor and a constant symbol for 0 (both of which are
definable in the original theory). Is x = x in (N,<) minimal? is it strongly minimal?

The idea of the following lemma is that algebraic sets are very small (being finite), so it is
possible to extend non-algebraic types to larger parameter sets whilst avoiding algebraic
sets (over those parameters):

Lemma 3.11 (Extension). Let π(x) be a partial type (closed under conjunctions) non-algebraic
over A. Let A ⊆ B. Then, π has a non-algebraic extension a ∈ S(B).

Proof. Consider

q0(x) := π(x) ∪ {¬ψ(x)|ψ(x) ∈ L(B) is algebraic }.

We prove this is finitely satisfiable. Take φ(x) ∈ π(x) (note π is closed under conjunc-
tions) and ψ1(x), . . . , ψn(x) algebraic. Then, since φ(M) is infinite and for each i ¬ψi(M) is
cofinite,

φ(x) ∧
∧

i≤n

¬ψi(x)

has infinitely many realisations. This proves finite satisfiability, and by compacness satisfi-
ability of q0. Finally, take any completion q ∈ S(B) of q0. This will still be non-algebraic by
construction of q0, completing the proof.

One can actually prove a more general statement, where the "small" sets one is avoiding
are charaterised from belonging to an ideal in the Boolean algebra of definable sets. This
will be very important later.

Definition 3.12. A set of definable subsets of M in the variable x, I ⊆ Defx(M) is an ideal
if it contains ∅, and it is closed under (definable) subsets and finite unions.

Exercise 3.13. Prove the following:
Let I ⊆ Defx(M) be an ideal. Let π(x) be a partial type over A (closed under conjunctions)
such that p(M) is not contained in any set in I. Then, for every B ⊇ A, there is a type
q ∈ S(B) extending p and such that q(M) is not contained in any set in I.

Lemma 3.14. The L(M)-formula φ(x) is minimal in M if and only if there is a unique non-
algebraic type p ∈ S(M) containing φ(x).
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Proof. (⇒) Assume φ is minimal in M. Being non-algebraic, by extension (Lemma 3.11), it
has a non-algebraic extension p ∈ S(M). Note that if ψ(x) ∈ p, then φ(x) ∧ ψ(x) is infinite,
and so by minimality of φ, φ(x) ∧ ¬ψ(x) is finite. So any type containing φ and ¬ψ is alge-
braic. This implies that p is the unique non-algebraic type containing φ.

(⇐) By contrapositive. Suppose φ(x) is not minimal. If it is algebraic, then it cannot be
contained in a non-algebraic type. So it is non-algebraic and by non-minimality there is
some L(M)-formula ψ with both φ ∧ ψ and φ ∧ ¬ψ non-algebraic. Hence, by extension
(Lemma 3.11), each formula extends to a non-algebraic type in S(M) containing φ. Since
the two types are clearly distinct (as one contains ψ and the other ¬ψ), this completes the
proof of the contrapositive.

Corollary 3.15 (Stationarity). Let p ∈ S(A) be strongly minimal. Then

(a) p has a unique non-algebraic extension to all B ⊇ A;

(b) If a0
1, . . . , a0

m and a1
1, . . . , a1

m are two sequences of realisations of p of length m which are
algebraically independent in the sense that

a
j
i /∈ acl(Aa

j
1, . . . a

j
i−1)

for each i ≤ m and j ∈ {0, 1}. Then,

a0
1, . . . , a0

m ≡A a1
1, . . . , a1

m.

So, the type over A of an algebraically independent tuple of realisations of p is entirely deter-
mined.

Proof. (a) From Lemma 3.14, p has a unique non-algebraic extension to M, and so also to
any set of parameters containing A.

(b) By induction. The base case is trivial. Suppose that a0 ≡A a1 for algebraically indepen-

dent m-tuples of realisations of p. Let a0
m+1 /∈ acl(Aa0) and a1

m+1 /∈ acl(Aa1) be realisatinos

of p. Take σ ∈ Aut(M/A) such that σ(a0) = a1. Since automorphisms preserve algebraic-

ity, σ(a0
m+1) is non-algebraic over Aa1. By Lemma 3.14, σ(a0

m+1) ≡Aa1 a1
m+1. So there is

τ ∈ Aut(M/Aa1) such that τσ(a0
m+1) = a1

m+1. Since the composition of the two automor-

phisms fixes A, a0a0
m+1 ≡A a1a1

m+1, as desired.

4 Pregeometries

In this lecture we are going to use the results from the previous lecture to prove that alge-
braic independence behaves particularly well in strongly minimal sets (and theories). In
particular, we will see that algebraic closure inside a strongly minimal set gives rise to a
pregeometry: a structure whose behaviour of algebraic independence satisfies the axioms
of linear independence, allowing us to talk about bases and dimensions.

The notion of a pregeometry (also known as matroid) originates from the work of Whitney
[21] and Van de Waerden [20], both of whom gave axioms for linear independence in vector
spaces. In particular, Whitney’s work stemmed from applying notions from linear algebra
to combinatorics after noticing various similarities between certain ideas of independence
and ranks in graph theory and the behaviour of linear independence. Nowadays matroid
theory is a branch of mathematics with several applications in combinatorics [15]. Our
interests differ from standard matroid theory because we study infinite pregeometries, but
we will make use of some basic facts about pregeometries in this section.

Definition 4.1. A pregeometry (X, cl) consists of a set X with a closure operator

cl : P(X) → P(X)

such that for all A ⊆ X and a, b ∈ X:
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• (REFLEXIVITY) A ⊆ cl(A);

• (FINITE CHARACTER) cl(A) =
⋃

{cl(A′)|A′ ⊆ A finite };

• (TRANSITIVITY) cl(cl(A)) = cl(A);

• (EXCHANGE) if a ∈ cl(Ab) \ cl(A), then b ∈ cl(Aa).

Remark 4.2. For any structure M, (M, acl) satisfies reflexivity, finite character, and transi-
tivity.

Theorem 4.3. Let φ be a strongly minimal L-formula. Let cl : P(M) → P(M) be defined by, for
A ⊆ φ(M), cl(A) := acl(A) ∩ φ(M). Then, (φ(M), cl) is a pregeometry.

Proof. Reflexivity, finite character and transitivity are trivial. We only need to verify ex-
change. Without loss of generality (and to simplify notation), we assume that A = ∅. All
elements we work with are inside of φ(M). Let a 6∈ acl(∅) and b 6∈ acl(a). We need to
prove a 6∈ acl(b).
Firstly, note that φ(x) extends to a unique non-algebraic type q(x) over ∅ (Lemma 3.14). By
stationarity (Corollary 3.15 (b)), all pairs a′b′ satisfying a′ 6∈ acl(∅) and b′ 6∈ acl(a′) have
the same type p(x, y).
Now, take (ai|i < ω) an infinite sequence of realisations of q(x) such that

ai 6∈ acl(a0 . . . ai−1).

This can be done by induction iterating non-algebraic extensions (by Lemma 3.11). Using
extension again, pick b′ 6∈ acl((ai|i < ω)) realising q(x). Since ai 6∈ acl(∅) and b′ 6∈ acl(ai)
for each i < ω, we have aib

′ ≡ ab for all i < ω. So, ai /∈ acl(b′), since tp(ai/b′) = p(x, b′)
has infinitely many realisations. But then, since b ≡ b′, p(x, b) also has infinitely many
realisations. So a 6∈ acl(b) as desired.

Y Observation 4.4. The above proof actually works in any model: we may need to move
outside of a given model M to realise the ai. However, the conclusion that p(x, b) is non-
algebraic, does tell us that a 6∈ acl(b) also in M.

Definition 4.5. Let (X, cl) be a pregeometry. For A ⊆ X, we say that:

• A is independent if a 6∈ cl(A \ {a}) for each a ∈ A;

• A is a generating set if cl(A) = X;

• A is a basis if it is an independent generating set for X.

Fact 4.6. (a) Every pregeometry has a basis [to prove this you need the axiom of choice];

(b) Any two bases for a pregeometry have the same cardinality.

Definition 4.7. For a pregeometry (X, cl), we say that the dimension of X, dim(X) is the
cardinality of a basis for X.

Definition 4.8. Given a pregeometry (X, cl), for S ⊆ X, let

• (S, cl) given by cl(A) = cl(A) ∩ S for all A ⊆ S be the restriction of (X, cl) to S;

• (X, clS) given by clS(A) = cl(A ∪ S) for all A ⊆ S be the relativisation of (X, cl) by
S;

We write dim(S) for dim((S, cl)), and dim(X/S) for dim((X, clS)). It is easy to show both
of these are also pregeometries.

Note that thinking with the restriction and relativisation allows us to speak of bases for
subspaces of X, or of independence over some subset of S ⊆ X.
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Y Observation 4.9. Note that for strongly minimal φ, the restriction (φ(M), cl) is well de-
fined since φ(M) ⊆ φ(M). Meanwhile, its relativisation by A ⊆ M, (φ(M), clA) corre-
sponds to the natural pregeometry on (φ(MA), cl), where MA is the expansion of M by
constants naming the elements of A. We write dimφ(M) for the dimension (φ(M), cl), and
dimφ(M/A) for the dimension of (φ(MA), cl).

Remark 4.10. For a pregeometry (X, cl) and S ⊆ X, we have

dim(X) = dim(S) + dim(X/S).

Exercise 4.11. Let f : A → B be an elementary bijection between sets of parameters. Then,
f extends to an elementary bijection f ′ : acl(A) → acl(B).

Lemma 4.12. Let φ ∈ L(A) be strongly minimal. Let A ⊆ M,N |= T. Then, the following are
equivalent:

1. there is an A-elementary bijection f : φ(M) → φ(N);

2. dimφ(M/A) = dimφ(N/A).

Proof. Without loss of generality we work over ∅ (we can always just work in Th(MA)).
(⇒) We know there is an elementary bijection f : φ(M) → φ(N). Note that elementary
bijections map bases to bases (since they preserve algebraic relations). Hence, dimφ(M) =
dimφ(N).
(⇐) Take bases U and V for φ(M) and φ(N). Let f : U → V be a bijection. By independence
of the bases and stationarity (Corollary 3.15 (b)), there is an elementary bijection between
U and V. Elementary bijection extend to algebraic closures (as noted in Exercise 4.11).
So there is an elementary bijection f ′ : acl(U) → acl(V). Now f ′|φ(M) is an elementary

bijection from φ(M) to φ(N).

Y Observation 4.13. For any set of parameters A,

|acl(A)| ≤ max(|L|, |A|),

where |L| is the size of the set of L-formulas.

Corollary 4.14. Let T be a countable and strongly minimal theory. Then, it is categorical in all
uncountable cardinals.

Proof. Let M1,M2 |= T have cardinality κ > ℵ0. Choose bases B1, B2 respectively. By
Observation 4.13, for each i ∈ {1, 2}:

κ = |Mi| = acl(Bi) ≤ max(|L|, |Bi|) = max(ℵ0, |Bi|) = |Bi|.

So dim(M1) = dim(M2). So there is an elementary bijection f : M1 → M2 by Lemma
4.12.

Exercise 4.15. Let T be a strongly minimal theory (not necessarily countable). Show the
following:

(a) Every infinite algebraically closed set of parameters S is the universe of a model of T;

(b) A model M is ω-saturated if and only if dim(M) ≥ ℵ0;

(c) All models are ω-homogeneous.
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5 ω-stability and the downwards Morley theorem

Definition 5.1. We say that T is ω-stable if for any n ∈ N and any set of parameters A such
that |A| ≤ ℵ0, |Sn(A)| ≤ ℵ0.

Remark 5.2. It is easy to prove that T is ω-stable if and only if for set of parameters A such
that |A| ≤ ℵ0, |S1(A)| ≤ ℵ0. We will generally use this characterisation of ω-stability.

Examples 5.3. • if T is strongly minimal, then it is ω-stable. To see this note that if
|A| ≤ ℵ0, there are only ≤ ℵ0 many algebraic types over A (since L is countable) and
there is a unique non-algebraic type over A, meaning that |S1(A)| ≤ ℵ0;

• if T is κ-categorical for κ > ℵ0, then it is ω-stable. This was proven in the previous
model theory course and it is a strictly more general fact than the previous one;

• the theory of an infinitely branching infinite tree is ω-stable (but not κ-categorical in
any infinite κ).

Definition 5.4. We say that T is totally transcendental if there is a binary tree of (consistent)
L(M)-formulas (φs(x)|s ∈<ω 2) such that

• ⊢ ∀x¬(φs0(x) ∧ ψs1(x));

• ⊢ ∀x((φs0(x) ∨ ψs1(x)) → φs(x)).

That is, we ask that any two children of a common note are mutually inconsistent, but their
union as a pair of definable sets contains the set defined by their parent.

Lemma 5.5. A theory T is ω-stable if and only if it is totally transcendental.

Definition 5.6. Let A be a set of parameters and x a tuple of variables. For an L(A)-formula
φ(x), we define

[φ(x)] := {p ∈ Sx(A)|φ(x) ∈ p}.

Sets of the form [φ(x)] form a basis of clopen sets for a topology on Sx(A), which we call
the Stone topology.
We say that a type p ∈ Sx(A) is isolated if there is some L(A)-formula ψ(x) such that
[ψ(x)] = {p}.

Fact 5.7. The type space Sx(A) with the Stone topology is compact, Hausdorff, and totally discon-
nected (i.e. for all p, q ∈ Sx(A) there is a clopen set X such that p ∈ X and q 6∈ X.

Exercise 5.8. Let T be a countable complete theory. Let A be a countable set of parameters
and x a finite tuple of variables. Suppose that |Sx(A)| < 2ℵ0 . Prove the following:

• the isolated types in Sn(A) are dense, i.e. for any L(A)-formula φ(x), [φ] contains an
isolated type;

• |Sx(A)| ≤ ℵ0.

[Hint: in both contexts, you need to build an adequate binary tree of L(A)-formulas (φσ|σ ∈
2<ω) such that any finite branch is consistent but any two children of a common node are
mutually inconsistent. Then, each infinite branch of the binary tree can be used to construct
a type, giving 2ℵ0-many.]

Definition 5.9. Let A ⊆ M |= T. We say that M is prime over A if for all N |= T and
f : A → N a partial elementary map, f extends to an elementary f ′ : M → N .

Exercise 5.10. Show the following: Let T be a countable ω-stable theory, M |= T and
A ⊆ M. Then, there is M0 � M which is a prime model over A and such that every
a ∈ M realises an isolated type over A.

10



Theorem 5.11 (Lachlan). Let T be ω-stable, M |= T, |M| ≥ ℵ1. Then, for each κ > |M| there is
N � M of cardinality κ such that for any countable set of L(M)-formulas Γ(x) in a finite variable
x, if N realises Γ(x), then so does M.

Exercise 5.12. We shall prove Theorem 5.11 following the steps below. Consider an ω-
stable theory T and M |= T, such that |M| ≥ ℵ1. Say that an L(M)-formula is large if
φ(M) is uncountable.

• Prove that there is a large L(M)-formula φ0(x) such that for any other L(M)-formula
ψ, either φ0(x) ∧ ψ(x) or φ0(x) ∧ ¬ψ(x) has a countable set of realisations.

• Consider
p(x) := {ψ(x)|ψ(x) ∈ L(M) and φ0(x) ∧ ψ(x) is large }.

Show that p is a complete type over M which is not realised in M but such that all of
its countable subsets are realised in M. Take N ′ � M with a point a realising p.

• By Exercise 5.10, take N � N ′ prime over Ma and such that every b ∈ N realises
an isolated type over Ma. Show that for every b ∈ N, every countable subset Γ(x) of
tp(b/M) is realised in M.

• Deduce Theorem 5.11.

Remark 5.13. Recall the two following facts from the model theory I course:

• any two saturated models of the same cardinality are isomorphic;

• if T is κ-categorical, then all of its models of cardinality κ are saturated.

Theorem 5.14 (Downwards Morley Theorem). Let T be countable and κ-categorical in some
uncountable κ. Then T is ℵ1-categorical.

Proof. Suppose by contradiction that T is κ-categorical (so ω-stable) and not ℵ1-categorical.
Then, it has a non-saturated model M of cardinality ℵ1. So there is some p ∈ S1(A)
for A ⊆ M countable which is not realised in M. By Theorem 5.11 and ω-stability, there
is N � M of cardinality κ and not realising p. But if T is κ-categorical, all models of
cardinality κ are saturated and N is not saturated. Contradiction.

6 Vaughtian pairs

Definition 6.1. We say that T has a Vaughtian pair if there are M 6� N |= T and φ ∈ L(M)
non-algebraic such that φ(M) = φ(N).

We will often write a Vaughtian pair as (N ,M) since it is convenient to think about this as
the expansion of N by a predicate P naming the smaller model M.

Exercise 6.2. Show that the theory of the random graph has a Vaughtian pair.

⋆⋆ Exercise 6.3. Show that there is no Vaughtian pair of real closed fields.

Lemma 6.4. Suppose that T has a Vaughtian pair. Then, T has a Vaughtian pair (N ,M) with N
and M countable.

Proof. This proof is essentially an application of the downwards Lowenheim-Skolem theo-
rem. Let (N ⋆,M⋆) be a Vaughtian pair for T as witnessed by the formula φ(x) ∈ L(A) for
A ⊆ M⋆ finite. Consider (N ⋆,M⋆) as N ⋆ expanded by a predicate P naming M⋆. Then,
by the downwards Lowenheim-Skolem theorem, there is (N , P(N)) � (N ⋆,M⋆) count-
able and containing A, and so, in particular, A ⊆ P(N).

It is easy to verify that P(N) � N by the Tarski-Vaught test. Moreover, φ(P(N)) is infinite
and such that φ(P(N)) = φ(N), P(N) ( N, since all of this is coded by the theory of
(N ⋆,M⋆). Hence, (N , P(N)) is a Vaughtian pair.
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Lemma 6.5 (Basic facts about ω-homogeneous models). Let T be a countable theory.

1. Every countable model of T has a countable ω-homogeneous elementary extension;

2. the union of an elementary chain of ω-homogeneous models is ω-homogeneous;

3. two ω-homogeneous countable models of T realising the same n-types over ∅ for all n ∈ N

are isomorphic.

Proof. For (1), start with M0 |= T countable. Build a countable elementary extension
M1 � M0 such that for all a ∈ M0, A ⊆ M0 finite, p(x, A) := tp(a/A) and f : A → M0

elementary, M1 realises p(x, f (A)). This can be done since it requires realising only count-
ably many types. Iterate this for a countable elementary chain M0 � M1 � M2 � . . . ,
and consider M :=

⋃

i<ω Mi. By construction this is ω-homogeneous (the argument is
essentially the same as the one below).

For (2), Consider N :=
⋃

β<λ Nβ, the union of an elementary chain of ω-homogeneous
models. Take a ∈ N, A ⊆ N finite, and f : A → N elementary. Since A is finite, f : A → Nβ

containing both A and a for some β < λ. Since Nβ is ω-homogeneous f can be extended to

f ′ : Aa → Nβ � N , yielding that N itseld is ω-homogeneous.

The proof of (3) is a trivial back & forth argument.

Example 6.6 (Thanks to R. Feller during the class). Usually, we work with ω-homogeneous
models. For an example of a non ω-homogeneous countable structure consider the model
of Th(Z,<) consisting of three disjoint copies of (Z,<) ordered one after the other M :=
Za1 ⊔ Za2 ⊔ Za3. Take a ∈ Za1, b ∈ Za3 and consider an elementary embedding f : ab →
M such that a 7→ a and b 7→ b′ for b′ ∈ Za2. Take c ∈ Za2. f cannot be extended to c: we
know that c has infinite distance from both a and b and is between then in the order <. But
every element between a and b′ is in either Za1 or Za2 and so cannot have infinite distance
from both of them.

Corollary 6.7. Suppose M0 � N0 are countable models of T. Then, there are (N ,M) �
(N0,M0) such that M and N are countable, ω-homogeneous and satisfy the same n-types over
∅. In particular, M ∼= N .

Proof. We construct a countable elementary chain

(N0,M0) � (N1,M1) � . . .

as follows: for (Ni,Mi) take (N ′,M′) � (Ni,Mi) such that M′ realises all n-types over
∅ realised by Ni. Then, by Lemma 6.5 (1) take a countable ω-homogeneous elementary
extension (Ni+1,Mi+1) � (N ′,M′). Note that since (Ni+1,Mi+1), we also have that both
Ni+1 and Mi+1 are ω-homogeneous.

Now, consider the union of this elementary chain, (N ,M). By construction and Lemma
6.5 (2) this is also ω-homogeneous, and so such that both N and M are ω-homogeneous.
Furthermore, by construction M and N satisfy the same n-types over ∅. Hence, (N ,M)
satisfies all of the desired properties.

Theorem 6.8 (Vaught’s two cardinal theorem). Let T have a Vaughtian pair. Then, there is
N ⋆ |= T of cardinality ℵ1 and φ ∈ L(N⋆) such that |φ(N⋆)| = ℵ0.

Proof. By Lemma 6.4, T has a countable Vaughtian pair and by Corollary 6.7 we can choose
it so that M and N are countable, ω-homogeneous and realising the same n-types over ∅.
In particular, M ∼= N . We build an elementary chain

(Nα|α < ω1)

such that
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• N0 = M,N1 = N ;

• Nα
∼= N ;

• (Nα+1,Nα) ∼= (N ,M).

For the successor step, suppose that we have Nα
∼= N . Then, Nα

∼= M, and so it has an
elementary extension Nα+1 such that (Nα+1,Nα) ∼= (N ,M), and so we are done. For the
limit step, for α < ω1 consider Nα =

⋃

β<α Nβ. Since α < ω1, this is a countable union
of countable sets and so is Nα countable. By Lemma 6.5 (2), this is ω-homogeneous. Also,
since any finite subset of Nα is contained in some Nβ � Nα and Nβ

∼= N , Nα realises all of
the same n-types over ∅ as N . Thus, Nα

∼= N as desired. Hence, we can build the desired
elementary chain (Nα|α < ω1).
Take N ⋆ =

⋃

α<ω1
Nα. Note that |N ⋆| = ℵ1: it must have size at least ℵ1 since we are

taking an uncountable union, where at each stage Nα+1 ) Nα. It has size at most ℵ1 being
an uncointable union of countable sets. However, since (Nα+1,Nα) ∼= (N ,M), we have
that

φ(Nα+1) = φ(Nα+1) = · · · = φ(N) = φ(M),

and so φ(N⋆) = φ(M), which is a countable set. So the conclusion of the theorem holds.

Definition 6.9. We say that T eliminates the quantifier ∃∞x if for every L-formula φ(x, y)

there is nφ ∈ N such for all tuples a ∈ M|y|, if |φ(M, a)| ≥ nφ, then φ(M, a) is infinite.

Exercise 6.10. Show that if T has no Vaughtian pairs, then it eliminates the quantifier ∃∞x.

Exercise 6.11. Suppose that T eliminates the quantifier ∃∞x. Let M |= T and let φ(x) ∈
L(M) be minimal in M. Show that φ(x) is strongly minimal.

Definition 6.12. For infinite cardinals κ > λ, we say that T has has a (λ, κ)-model if |M| = κ
and for some φ(x) ∈ L, |φ(M)| = λ.

Exercise 6.13. Prove the following:

1. If T has a (κ, λ)-model then it has a Vaughtian pair (and so an (ℵ1,ℵ0)-model [Hint:
this should be trivial];

2. Prove that if T is ω-stable and has an (ℵ1,ℵ0)-model, then for each κ > ℵ1, T has a
(κ,ℵ0)-model [Hint: you may need to use Theorem 5.11].

⋆⋆ Exercise 6.14. We show that in Exercise 6.13 (2), the assumption of ω-stability is nec-
essary. Let L = {P0, . . . , Pn, E1, . . . , En} for unary predicates Pi and binary relations Ei.
Consider the L-theory T stating that:

• the Pi are infinite and partition the domain;

• for each i ∈ {1, . . . , n}, ∀xy(Ei(x, y) → Pi−1(x) ∧ Pi(y));

• for each i ∈ {1, . . . , n}, ∀xy((Pi(x) ∧ Pi(y) ∧ ∀z(Ei(z, x) ↔ Ei(z, y)) → x = y).

For example, for X0 an infinite, take Xi+1 = P(Xi) for i ∈ {1, . . . , n}. Let M be the dis-
joint union of the Xi with Pi naming each of the Xi and Ei being the membership relation
restricted to Xi × xi+1. Then, M |= T. Show that if M |= T and |P0(M)| = ℵ0, then
|M| ≤ in. Hence, M has a (in,ℵ0)-model but it does not have a (κ,ℵ0)-model for ar-
bitrarily large κ. [Hint: I would only do the case of n = 1. Recall that i0 = ℵ0 and
iα+1 = 2iα .]
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