## When invariance implies exchangeability Paolo Marimon, paolo.marimon@tuwien.ac.at. Joint work with Samuel Braunfeld and Colin Jahel

## (1) Exchangeable graphs

An exchangeable graph is a Borel probability measure on the space of graphs on  $\mathbb N$  invariant under the action of  $S_\infty$  (i.e. all permutations).

**Example:** construction of the random graph by tossing coins for each pair of points in  $\mathbb{N}$ .

They are studied in:

- Probability: Aldous & Hoover representation theorem for exchangeable graphs [3];
- Statistical networks: natural setting to think probabilistically about a graph on a large population with no extra information;
- Combinatorics: correspond to graphons;
- Logic: [1] answer: for what  $\mathcal N$  is there an exchangeable structure concentrating on its isomorphism type?

## (2) Invariant Random Expansions

C' a hereditary class of finite relational structures.

An **invariant random expansion (IRE)** of  $\mathcal{M}$  by  $\mathcal{C}'$  is an  $\operatorname{Aut}(M)$ -invariant regular Borel probability measure on the space of structures  $\mathcal{N}'$  with domain M and age (i.e. class of finite substructures) contained in C'.

IREs of  $(\mathbb{N}, =)$  are **exchangeable structures**.

We consider  $\mathcal{M}$  countable and **homogeneous**: any isomorphism between finite substructures extends to an automorphism.

## (3) Previous work

Previous work characterised IREs for:

- $\mathcal{M}$  very well-behaved:  $(\mathbb{Q}, <)$  [9], or with disjoint *n*-amalgamation (i.e. no interesting) omitted substructures) [6];
- $\mathcal{C}'$  with very slow growth rate: unary structures, or linear orders [8, 4].

We want to understand IREs of  $\mathcal{M}$  with interesting omitted substructures.

# When are all IREs of $\mathcal{M}$ by $\mathcal{C}'$ exchangeable?

• IREs of  $\mathcal{M}$  by  $\mathcal{C}'$  always include the exchangeable ones, which are well-understood;

## (4) The Main Theorem

Let  $k \ge 1$  and  $\mathcal{M}$  be homogeneous with k-overlap closed age. Let  $\mathcal{C}'$  have labelled growth rate  $O(e^{n^{k+\delta}})$  for every  $\delta > 0$ . Then every IRE of  $\mathcal{M}$  by  $\mathcal{C}'$  is exchangeable.

**Example:** IREs of the generic tetrahedron-free 3-hypergraph by graphs are exchangeable.

Proof uses probabilistic method techniques inspired by [4]. Works for **Consistent Random Expansions**: random expansions of an hereditary class C by another C'.

## (5) k-overlap closed examples

- 1-overlap closed: free amalgamation classes in arity > 1;
- **2-overlap closed:** 3-hypergraphs, tetrahedron-free 3-hypergraphs;
- *k*-overlap closed:  $C = Forb(\mathcal{F})$  of arity > k and all  $A \in \mathcal{F}$  are (k+1)-irreducible, or of bounded size and k-irreducible (for  $k \ge 2$ )

*k*-irreducible: every *k*-many vertices are related.



 $\mathcal{L}$  of arity > k.  $\mathcal{C}$  is k-overlap closed if for every r > k and arbitrarily large n, there exists an r-uniform hypergraph  $\mathbb{K}$  on n vertices s.t.

- I. (Density)  $\mathbb{K}$  has at least  $C(r)n^{k+\alpha(r)}$  hyperedges for some  $\alpha(r) > 0$ ;
- 2. (Pasting) For every  $H_1, H_2 \in C[r]$ , pasting them into the K-hyperedges yields  $G \in C[n]$  (possibly after adding extra relations).

## (6) Growth rate examples

- $O(e^{n^{1+\delta}})$ : unary structures, the age of any NIP homogeneous structure;
- $O(e^{n^{2+\delta}})$ : graphs;
- $O(e^{n^{k+\delta}})$ : structures with finitely many k-ary relations.





If  $\mathcal{M}$  is k-transitive and "looks random" enough", IREs by "essentially k-ary" classes are exchangeable.

If  $\mathcal{M}$  has "hidden k-ary structure", it can have nonexchangeable IREs by C' of growth rate  $O(e^{n^{k+\delta}})$ :



An Invariant Keisler measure (IKM) is an Aut(M)-invariant regular Borel probability measure on  $S_x(M)$ .

## References

- Soc. (1994).
- H. Crane and H. Towsner. "Relatively exchangeable structures". [6] In: J. Symb. Log. (2018).
  - D. E. Ensley. "Automorphism–invariant measures on  $\aleph_0$ categorical structures without the independence property". In: J. Symb. Log. (1996).
- C. Jahel and T. Tsankov. "Invariant measures on products and on the space of linear orders". In: J. Ecole Pol. Math. (2022).
- O. Kallenberg. Probabilistic symmetries and invariance principles. Springer, 2005.





\* \* \* \* \*
\* \* \* \*
Image: Constraint of the second of

### (8) Moral of the story

NIP homogeneous structures;

universal homogeneous kay-graphs.

#### (9) Invariant Keisler measures

IKMs are a special case of IREs!

• By the Main Theorem, IKMs of the generic tetrahedron-free 3-hypergraph, and of many other homogeneous structures are  $S_{\infty}$ invariant!

 Previous work only understood IKMs for homogeneous  $\mathcal{M}$  binary or NIP [2, 7];

• We give  $2^{\aleph_0}$  very tame simple homogeneous structures with universally measure zero nonforking formulas (cf. [5]).

- N. Ackerman, C. Freer, and R. Patel. "Invariant measures concentrated on countable structures". In: Forum Math. Sigma. 2016.
- M. H. Albert. "Measures on the random graph". In: J. Lon. Math.
- D. J. Aldous. "Representations for partially exchangeable arrays of random variables". In: J. Mult. Anal. 11.4 (1981).
- O. Angel, A. S. Kechris, and R. Lyons. "Random orderings and unique ergodicity of automorphism groups". In: JEMS (2014).
- A. Chernikov, E. Hrushovski, A. Kruckman, K. Krupiński, S. Moconja, A. Pillay, and N. Ramsey. "Invariant measures in simple and in small theories". In: J. Math. Log. (2023).